|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
|
|
client = InferenceClient( |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
) |
|
|
|
|
|
def show_info(section): |
|
if section == "Experiences": |
|
return "Details about Rishiraj's experiences..." |
|
elif section == "Communities": |
|
return "Details about communities Rishiraj is involved in..." |
|
elif section == "Recommendations": |
|
return "Rishiraj's recommendations..." |
|
elif section == "Conferences": |
|
return "Conferences attended by Rishiraj..." |
|
else: |
|
return "Select a section to display information." |
|
|
|
|
|
with gr.Blocks() as app: |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("# Hi 👋, I'm Rishiraj Acharya (ঋষিরাজ আচার্য্য)") |
|
gr.Markdown("## Google Developer Expert in ML ✨ | Hugging Face Fellow 🤗 | GSoC '22 at TensorFlow 👨🏻🔬 | TFUG Kolkata Organizer 🎙️ | Kaggle Master 🧠 | Dynopii ML Engineer 👨🏻💻") |
|
with gr.Column(): |
|
gr.Image("profile.png") |
|
|
|
with gr.Row(): |
|
section_dropdown = gr.Dropdown(["Experiences", "Communities", "Recommendations", "Conferences"], label="Select Information to Display") |
|
info_display = gr.Textbox(label="Information") |
|
|
|
section_dropdown.change(show_info, inputs=section_dropdown, outputs=info_display) |
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
def generate( |
|
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
return output |
|
|
|
|
|
additional_inputs=[ |
|
gr.Textbox( |
|
label="System Prompt", |
|
max_lines=1, |
|
interactive=True, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.9, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=256, |
|
minimum=0, |
|
maximum=1048, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.90, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1.2, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
examples=[["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], |
|
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], |
|
] |
|
|
|
llm = gr.ChatInterface( |
|
fn=generate, |
|
chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble"), |
|
additional_inputs=additional_inputs, |
|
title="Hi 👋, I'm Rishiraj Acharya (ঋষিরাজ আচার্য্য)", |
|
examples=examples, |
|
concurrency_limit=20, |
|
) |
|
|
|
demo = gr.TabbedInterface([app, llm], ["About", "Chat"]) |
|
demo.launch() |