Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
import ast
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")
|
9 |
+
|
10 |
+
@spaces.GPU
|
11 |
+
def compute(queries_input, documents_input):
|
12 |
+
try:
|
13 |
+
# Convert string input to Python lists
|
14 |
+
queries = ast.literal_eval(queries_input)
|
15 |
+
documents = ast.literal_eval(documents_input)
|
16 |
+
|
17 |
+
# Validate input
|
18 |
+
if not isinstance(queries, list) or not isinstance(documents, list):
|
19 |
+
return "Inputs must be lists."
|
20 |
+
|
21 |
+
# Generate embeddings
|
22 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
23 |
+
document_embeddings = model.encode(documents)
|
24 |
+
|
25 |
+
# Compute similarity
|
26 |
+
similarity_matrix = torch.tensor(model.similarity(query_embeddings, document_embeddings))
|
27 |
+
return similarity_matrix.tolist()
|
28 |
+
except Exception as e:
|
29 |
+
return str(e)
|
30 |
+
|
31 |
+
demo = gr.Interface(
|
32 |
+
fn=compute,
|
33 |
+
inputs=[
|
34 |
+
gr.Textbox(label="Queries (Python list, e.g. ['query1', 'query2'])"),
|
35 |
+
gr.Textbox(label="Documents (Python list, e.g. ['doc1', 'doc2'])")
|
36 |
+
],
|
37 |
+
outputs="json",
|
38 |
+
title="embedding"
|
39 |
+
)
|
40 |
+
demo.launch()
|