File size: 4,686 Bytes
7119802
 
3566a6b
983678f
 
338a3b4
 
 
 
 
7119802
69601bd
 
 
3566a6b
338a3b4
9b0f500
7119802
983678f
 
 
 
 
 
 
 
 
 
 
 
 
338a3b4
 
 
 
 
 
 
 
4c0c0ee
338a3b4
7119802
9b0f500
 
 
 
 
 
 
 
7119802
 
 
 
9b0f500
7119802
 
 
 
 
 
 
 
 
 
 
 
 
 
983678f
 
4c0c0ee
 
 
9b0f500
16defe0
7119802
 
 
16defe0
 
 
7119802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c0c0ee
7119802
 
 
 
 
c63266f
145f19e
7119802
 
de7679e
7119802
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from huggingface_hub import InferenceClient
import gradio as gr
import os
import re
import requests
import http.client
import typing
import urllib.request
import vertexai
from vertexai.generative_models import GenerativeModel, Image

with open(".config/application_default_credentials.json", 'w') as file:
    file.write(str(os.getenv('credentials')))

vertexai.init(project=os.getenv('project_id'))
model = GenerativeModel("gemini-1.0-pro-vision")
client = InferenceClient("google/gemma-7b-it")

def extract_image_urls(text):
    url_regex = r"(https?:\/\/.*\.(?:png|jpg|jpeg|gif|webp|svg))"
    image_urls = re.findall(url_regex, text, flags=re.IGNORECASE)
    valid_image_url = ""
    for url in image_urls:
        try:
            response = requests.head(url)  # Use HEAD request for efficiency
            if response.status_code in range(200, 300) and 'image' in response.headers.get('content-type', ''):
                valid_image_url = url
        except requests.exceptions.RequestException:
            pass  # Ignore inaccessible URLs
    return valid_image_url

def load_image_from_url(image_url: str) -> Image:
    with urllib.request.urlopen(image_url) as response:
        response = typing.cast(http.client.HTTPResponse, response)
        image_bytes = response.read()
    return Image.from_bytes(image_bytes)

def search(url):
    image = load_image_from_url(url)
    response = model.generate_content([image,"Describe what is shown in this image."])
    return response.text

def format_prompt(message, history, cust_p):
    prompt = ""
    if history:
        for user_prompt, bot_response in history:
            prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
            prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
    prompt+=cust_p.replace("USER_INPUT",message)
    return prompt

def generate(
    prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    custom_prompt="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model"
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    image = extract_image_urls(prompt)
    if image:
        image_description = "Image Description: " + search(image)
        prompt = prompt.replace(image, image_description)
        print(prompt)
    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history, custom_prompt)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
    output = ""
    for response in stream:
        output += response.token.text
        yield [(prompt,output)]
    history.append((prompt,output))
    yield history


additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

examples=[["What are they doing here https://upload.wikimedia.org/wikipedia/commons/3/38/Two_dancers.jpg ?", None, None, None, None, None]]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False),
    additional_inputs=additional_inputs,
    title="Gemma Gemini Multimodal Chatbot",
    description="Gemini Sprint submission by Rishiraj Acharya. Uses Google's Gemini 1.0 Pro Vision multimodal model from Vertex AI with Google's Gemma 7B Instruct model from Hugging Face. Google Cloud credits are provided for this project.",
    theme="Soft",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)