translate / app.py
rishiraj's picture
Create app.py
117e32e verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
import torch
model_name = "sarvamai/sarvam-translate"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda:0')
@spaces.GPU
def generate(tgt_lang, input_txt):
messages = [
{"role": "system", "content": f"Translate the following sentence into {tgt_lang}."},
{"role": "user", "content": input_txt},
]
# Apply chat template to structure the conversation
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize and move input to model device
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024,
do_sample=True,
temperature=0.01,
num_return_sequences=1
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
return tokenizer.decode(output_ids, skip_special_tokens=True)
demo = gr.Interface(
fn=generate,
inputs=[
gr.Radio(["Hindi", "Bengali", "Marathi", "Telugu", "Tamil", "Gujarati", "Urdu", "Kannada", "Odia", "Malayalam", "Punjabi", "Assamese", "Maithili", "Santali", "Kashmiri", "Nepali", "Sindhi", "Dogri", "Konkani", "Manipuri (Meitei)", "Bodo", "Sanskrit"], label="Target Language", value="Hindi"),
gr.Textbox(label="Input Text", value="Be the change you wish to see in the world."),
],
outputs=gr.Textbox(label="Translation"),
title="translate"
)
demo.launch()