import gradio as gr | |
from langchain.llms import GooglePalm | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M" | |
llm = GooglePalm(google_api_key = api_key, temperature=0.7) | |
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt') | |
data = loader.load() | |
instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3") | |
vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings) | |
retriever = vectordb.as_retriever() | |
from langchain.prompts import PromptTemplate | |
prompt_template = """Given the following context and a question, generate an answer based on the context only. | |
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes. | |
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!" | |
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer. | |
CONTEXT: {context} | |
QUESTION: {question}""" | |
PROMPT = PromptTemplate( | |
template = prompt_template, input_variables = ["context", "question"] | |
) | |
from langchain.chains import RetrievalQA | |
chain = RetrievalQA.from_chain_type(llm = llm, | |
chain_type="stuff", | |
retriever=retriever, | |
input_key="query", | |
return_source_documents=True, | |
chain_type_kwargs = {"prompt": PROMPT}) | |
def chatresponse(message, history): | |
output = chain(message) | |
return output['result'] | |
gr.ChatInterface(chatresponse).launch() | |
# import gradio as gr | |
# from langchain.llms import GooglePalm | |
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M" | |
# llm = GooglePalm(google_api_key = api_key, temperature=0.7) | |
# from langchain.document_loaders.csv_loader import CSVLoader | |
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt') | |
# data = loader.load() | |
# from langchain_huggingface import HuggingFaceEmbeddings | |
# from langchain.vectorstores import FAISS | |
# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big | |
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3") | |
# # instructor_embeddings = HuggingFaceEmbeddings() | |
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings) | |
# # e = embeddings_model.embed_query("What is your refund policy") | |
# retriever = vectordb.as_retriever() | |
# from langchain.prompts import PromptTemplate | |
# prompt_template = """Given the following context and a question, generate an answer based on the context only. | |
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes. | |
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!" | |
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer. | |
# CONTEXT: {context} | |
# QUESTION: {question}""" | |
# PROMPT = PromptTemplate( | |
# template = prompt_template, input_variables = ["context", "question"] | |
# ) | |
# from langchain.chains import RetrievalQA | |
# chain = RetrievalQA.from_chain_type(llm = llm, | |
# chain_type="stuff", | |
# retriever=retriever, | |
# input_key="query", | |
# return_source_documents=True, | |
# chain_type_kwargs = {"prompt": PROMPT}) | |
# # Load your LLM model and necessary components | |
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown | |
# # For this example, we'll assume the model and chain function are already available | |
# def chatbot(query): | |
# response = chain(query) | |
# # Extract the 'result' part of the response | |
# result = response.get('result', 'Sorry, I could not find an answer.') | |
# return result | |
# # Define the Gradio interface | |
# iface = gr.Interface( | |
# fn=chatbot, # Function to call | |
# inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type | |
# outputs="text", # Output type | |
# title="Hugging Face LLM Chatbot", | |
# description="Ask any question related to the documents and get an answer from the LLM model.", | |
# ) | |
# # Launch the interface | |
# iface.launch() | |
# # Save this file as app.py and push it to your Hugging Face Space repository | |
# # import gradio as gr | |
# # def greet(name, intensity): | |
# # return "Hello, " + name + "!" * int(intensity) | |
# # demo = gr.Interface( | |
# # fn=greet, | |
# # inputs=["text", "slider"], | |
# # outputs=["text"], | |
# # ) | |
# # demo.launch() | |
# # import gradio as gr | |
# # from huggingface_hub import InferenceClient | |
# # """ | |
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# # """ | |
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# # def respond( | |
# # message, | |
# # history: list[tuple[str, str]], | |
# # system_message, | |
# # max_tokens, | |
# # temperature, | |
# # top_p, | |
# # ): | |
# # messages = [{"role": "system", "content": system_message}] | |
# # for val in history: | |
# # if val[0]: | |
# # messages.append({"role": "user", "content": val[0]}) | |
# # if val[1]: | |
# # messages.append({"role": "assistant", "content": val[1]}) | |
# # messages.append({"role": "user", "content": message}) | |
# # response = "" | |
# # for message in client.chat_completion( | |
# # messages, | |
# # max_tokens=max_tokens, | |
# # stream=True, | |
# # temperature=temperature, | |
# # top_p=top_p, | |
# # ): | |
# # token = message.choices[0].delta.content | |
# # response += token | |
# # yield response | |
# # """ | |
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# # """ | |
# # demo = gr.ChatInterface( | |
# # respond, | |
# # additional_inputs=[ | |
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# # gr.Slider( | |
# # minimum=0.1, | |
# # maximum=1.0, | |
# # value=0.95, | |
# # step=0.05, | |
# # label="Top-p (nucleus sampling)", | |
# # ), | |
# # ], | |
# # ) | |
# # if __name__ == "__main__": | |
# # demo.launch() | |