updated app.py using huggingface space
Browse files
app.py
CHANGED
@@ -1,27 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
from langchain.llms import GooglePalm
|
|
|
|
|
|
|
4 |
|
5 |
api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
6 |
|
7 |
llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
8 |
|
9 |
-
from langchain.document_loaders.csv_loader import CSVLoader
|
10 |
|
11 |
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
12 |
data = loader.load()
|
13 |
|
14 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
-
from langchain.vectorstores import FAISS
|
16 |
|
17 |
-
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
|
18 |
instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
|
19 |
-
# instructor_embeddings = HuggingFaceEmbeddings()
|
20 |
-
|
21 |
vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
|
22 |
|
23 |
-
# e = embeddings_model.embed_query("What is your refund policy")
|
24 |
-
|
25 |
retriever = vectordb.as_retriever()
|
26 |
|
27 |
from langchain.prompts import PromptTemplate
|
@@ -49,104 +46,161 @@ chain = RetrievalQA.from_chain_type(llm = llm,
|
|
49 |
return_source_documents=True,
|
50 |
chain_type_kwargs = {"prompt": PROMPT})
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
def chatbot(query):
|
57 |
-
response = chain(query)
|
58 |
-
# Extract the 'result' part of the response
|
59 |
-
result = response.get('result', 'Sorry, I could not find an answer.')
|
60 |
-
return result
|
61 |
-
|
62 |
-
# Define the Gradio interface
|
63 |
-
iface = gr.Interface(
|
64 |
-
fn=chatbot, # Function to call
|
65 |
-
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type
|
66 |
-
outputs="text", # Output type
|
67 |
-
title="Hugging Face LLM Chatbot",
|
68 |
-
description="Ask any question related to the documents and get an answer from the LLM model.",
|
69 |
-
)
|
70 |
|
71 |
-
|
72 |
-
iface.launch()
|
73 |
|
74 |
-
# Save this file as app.py and push it to your Hugging Face Space repository
|
75 |
|
76 |
# import gradio as gr
|
|
|
77 |
|
78 |
-
#
|
79 |
-
# return "Hello, " + name + "!" * int(intensity)
|
80 |
|
81 |
-
#
|
82 |
-
# fn=greet,
|
83 |
-
# inputs=["text", "slider"],
|
84 |
-
# outputs=["text"],
|
85 |
-
# )
|
86 |
|
87 |
-
#
|
88 |
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
-
# from
|
92 |
-
|
93 |
-
# ""
|
94 |
-
#
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
#
|
100 |
-
|
101 |
-
#
|
102 |
-
|
103 |
-
#
|
104 |
-
|
105 |
-
#
|
106 |
-
|
107 |
-
#
|
108 |
-
|
109 |
-
#
|
110 |
-
|
111 |
-
#
|
112 |
-
|
113 |
-
#
|
114 |
-
|
115 |
-
#
|
116 |
-
|
117 |
-
# response = ""
|
118 |
-
|
119 |
-
# for message in client.chat_completion(
|
120 |
-
# messages,
|
121 |
-
# max_tokens=max_tokens,
|
122 |
-
# stream=True,
|
123 |
-
# temperature=temperature,
|
124 |
-
# top_p=top_p,
|
125 |
-
# ):
|
126 |
-
# token = message.choices[0].delta.content
|
127 |
-
|
128 |
-
# response += token
|
129 |
-
# yield response
|
130 |
-
|
131 |
-
# """
|
132 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
133 |
-
# """
|
134 |
-
# demo = gr.ChatInterface(
|
135 |
-
# respond,
|
136 |
-
# additional_inputs=[
|
137 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
138 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
139 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
140 |
-
# gr.Slider(
|
141 |
-
# minimum=0.1,
|
142 |
-
# maximum=1.0,
|
143 |
-
# value=0.95,
|
144 |
-
# step=0.05,
|
145 |
-
# label="Top-p (nucleus sampling)",
|
146 |
-
# ),
|
147 |
-
# ],
|
148 |
# )
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
#
|
152 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
+
import langchain, langchain_huggingface
|
4 |
+
|
5 |
from langchain.llms import GooglePalm
|
6 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
|
10 |
api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
11 |
|
12 |
llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
13 |
|
|
|
14 |
|
15 |
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
16 |
data = loader.load()
|
17 |
|
|
|
|
|
18 |
|
|
|
19 |
instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
|
|
|
|
|
20 |
vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
|
21 |
|
|
|
|
|
22 |
retriever = vectordb.as_retriever()
|
23 |
|
24 |
from langchain.prompts import PromptTemplate
|
|
|
46 |
return_source_documents=True,
|
47 |
chain_type_kwargs = {"prompt": PROMPT})
|
48 |
|
49 |
+
def chatresponse(message, history):
|
50 |
+
output = chain(message)
|
51 |
+
return output['result']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
gr.ChatInterface(chatresponse).launch()
|
|
|
54 |
|
|
|
55 |
|
56 |
# import gradio as gr
|
57 |
+
# from langchain.llms import GooglePalm
|
58 |
|
59 |
+
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
|
|
60 |
|
61 |
+
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# from langchain.document_loaders.csv_loader import CSVLoader
|
64 |
|
65 |
+
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
66 |
+
# data = loader.load()
|
67 |
|
68 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
69 |
+
# from langchain.vectorstores import FAISS
|
70 |
+
|
71 |
+
# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
|
72 |
+
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
|
73 |
+
# # instructor_embeddings = HuggingFaceEmbeddings()
|
74 |
+
|
75 |
+
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
|
76 |
+
|
77 |
+
# # e = embeddings_model.embed_query("What is your refund policy")
|
78 |
+
|
79 |
+
# retriever = vectordb.as_retriever()
|
80 |
+
|
81 |
+
# from langchain.prompts import PromptTemplate
|
82 |
+
|
83 |
+
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
|
84 |
+
|
85 |
+
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
86 |
+
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
|
87 |
+
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
|
88 |
+
|
89 |
+
# CONTEXT: {context}
|
90 |
+
|
91 |
+
# QUESTION: {question}"""
|
92 |
+
|
93 |
+
# PROMPT = PromptTemplate(
|
94 |
+
# template = prompt_template, input_variables = ["context", "question"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# )
|
96 |
|
97 |
+
# from langchain.chains import RetrievalQA
|
98 |
+
|
99 |
+
# chain = RetrievalQA.from_chain_type(llm = llm,
|
100 |
+
# chain_type="stuff",
|
101 |
+
# retriever=retriever,
|
102 |
+
# input_key="query",
|
103 |
+
# return_source_documents=True,
|
104 |
+
# chain_type_kwargs = {"prompt": PROMPT})
|
105 |
+
|
106 |
+
# # Load your LLM model and necessary components
|
107 |
+
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
|
108 |
+
# # For this example, we'll assume the model and chain function are already available
|
109 |
+
|
110 |
+
# def chatbot(query):
|
111 |
+
# response = chain(query)
|
112 |
+
# # Extract the 'result' part of the response
|
113 |
+
# result = response.get('result', 'Sorry, I could not find an answer.')
|
114 |
+
# return result
|
115 |
+
|
116 |
+
# # Define the Gradio interface
|
117 |
+
# iface = gr.Interface(
|
118 |
+
# fn=chatbot, # Function to call
|
119 |
+
# inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type
|
120 |
+
# outputs="text", # Output type
|
121 |
+
# title="Hugging Face LLM Chatbot",
|
122 |
+
# description="Ask any question related to the documents and get an answer from the LLM model.",
|
123 |
+
# )
|
124 |
|
125 |
+
# # Launch the interface
|
126 |
+
# iface.launch()
|
127 |
+
|
128 |
+
# # Save this file as app.py and push it to your Hugging Face Space repository
|
129 |
+
|
130 |
+
# # import gradio as gr
|
131 |
+
|
132 |
+
# # def greet(name, intensity):
|
133 |
+
# # return "Hello, " + name + "!" * int(intensity)
|
134 |
+
|
135 |
+
# # demo = gr.Interface(
|
136 |
+
# # fn=greet,
|
137 |
+
# # inputs=["text", "slider"],
|
138 |
+
# # outputs=["text"],
|
139 |
+
# # )
|
140 |
+
|
141 |
+
# # demo.launch()
|
142 |
+
|
143 |
+
|
144 |
+
# # import gradio as gr
|
145 |
+
# # from huggingface_hub import InferenceClient
|
146 |
+
|
147 |
+
# # """
|
148 |
+
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
149 |
+
# # """
|
150 |
+
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
151 |
+
|
152 |
+
|
153 |
+
# # def respond(
|
154 |
+
# # message,
|
155 |
+
# # history: list[tuple[str, str]],
|
156 |
+
# # system_message,
|
157 |
+
# # max_tokens,
|
158 |
+
# # temperature,
|
159 |
+
# # top_p,
|
160 |
+
# # ):
|
161 |
+
# # messages = [{"role": "system", "content": system_message}]
|
162 |
+
|
163 |
+
# # for val in history:
|
164 |
+
# # if val[0]:
|
165 |
+
# # messages.append({"role": "user", "content": val[0]})
|
166 |
+
# # if val[1]:
|
167 |
+
# # messages.append({"role": "assistant", "content": val[1]})
|
168 |
+
|
169 |
+
# # messages.append({"role": "user", "content": message})
|
170 |
+
|
171 |
+
# # response = ""
|
172 |
+
|
173 |
+
# # for message in client.chat_completion(
|
174 |
+
# # messages,
|
175 |
+
# # max_tokens=max_tokens,
|
176 |
+
# # stream=True,
|
177 |
+
# # temperature=temperature,
|
178 |
+
# # top_p=top_p,
|
179 |
+
# # ):
|
180 |
+
# # token = message.choices[0].delta.content
|
181 |
+
|
182 |
+
# # response += token
|
183 |
+
# # yield response
|
184 |
+
|
185 |
+
# # """
|
186 |
+
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
187 |
+
# # """
|
188 |
+
# # demo = gr.ChatInterface(
|
189 |
+
# # respond,
|
190 |
+
# # additional_inputs=[
|
191 |
+
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
192 |
+
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
193 |
+
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
194 |
+
# # gr.Slider(
|
195 |
+
# # minimum=0.1,
|
196 |
+
# # maximum=1.0,
|
197 |
+
# # value=0.95,
|
198 |
+
# # step=0.05,
|
199 |
+
# # label="Top-p (nucleus sampling)",
|
200 |
+
# # ),
|
201 |
+
# # ],
|
202 |
+
# # )
|
203 |
+
|
204 |
+
|
205 |
+
# # if __name__ == "__main__":
|
206 |
+
# # demo.launch()
|