rishisim commited on
Commit
deb59b3
1 Parent(s): 3c99e9a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -14
app.py CHANGED
@@ -1,28 +1,33 @@
1
  import gradio as gr
2
-
3
  # from langchain.llms import GooglePalm
4
- # from langchain.document_loaders.csv_loader import CSVLoader
5
- # from langchain_huggingface import HuggingFaceEmbeddings
6
- # from langchain.vectorstores import FAISS
7
-
8
-
9
- from langchain_community.llms import GooglePalm
10
- from langchain_community.document_loaders import CSVLoader
11
- from langchain_community.vectorstores import FAISS
12
- from langchain_huggingface import HuggingFaceEmbeddings
13
 
14
 
15
  api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
16
 
17
- llm = GooglePalm(google_api_key = api_key, temperature=0.7)
18
-
19
 
20
  loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
21
  data = loader.load()
22
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
25
- vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
 
 
 
26
 
27
  retriever = vectordb.as_retriever()
28
 
@@ -58,6 +63,67 @@ def chatresponse(message, history):
58
  gr.ChatInterface(chatresponse).launch()
59
 
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  # import gradio as gr
62
  # from langchain.llms import GooglePalm
63
 
 
1
  import gradio as gr
 
2
  # from langchain.llms import GooglePalm
3
+ from langchain_google_genai import GoogleGenerativeAI
 
 
 
 
 
 
 
 
4
 
5
 
6
  api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
7
 
8
+ llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
9
+ # llm = GooglePalm(google_api_key = api_key, temperature=0.7)
10
 
11
  loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
12
  data = loader.load()
13
 
14
+ from langchain_huggingface import HuggingFaceEmbeddings
15
+ from langchain.vectorstores import FAISS
16
+ import warnings
17
+
18
+ # Suppress specific warnings if they are not critical
19
+ warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
20
+ warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
21
+
22
+ # Define the embedding model
23
+ # Using a smaller model for demonstration purposes; adjust according to your needs
24
+ model_name = "BAAI/bge-m3"
25
 
26
+ # Initialize HuggingFace embeddings
27
+ instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)
28
+
29
+ # Create FAISS vector store from documents
30
+ vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
31
 
32
  retriever = vectordb.as_retriever()
33
 
 
63
  gr.ChatInterface(chatresponse).launch()
64
 
65
 
66
+
67
+ # import gradio as gr
68
+
69
+ # # from langchain.llms import GooglePalm
70
+ # # from langchain.document_loaders.csv_loader import CSVLoader
71
+ # # from langchain_huggingface import HuggingFaceEmbeddings
72
+ # # from langchain.vectorstores import FAISS
73
+
74
+
75
+ # from langchain_community.llms import GooglePalm
76
+ # from langchain_community.document_loaders import CSVLoader
77
+ # from langchain_community.vectorstores import FAISS
78
+ # from langchain_huggingface import HuggingFaceEmbeddings
79
+
80
+
81
+ # api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
82
+
83
+ # llm = GooglePalm(google_api_key = api_key, temperature=0.7)
84
+
85
+
86
+ # loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
87
+ # data = loader.load()
88
+
89
+
90
+ # instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
91
+ # vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
92
+
93
+ # retriever = vectordb.as_retriever()
94
+
95
+ # from langchain.prompts import PromptTemplate
96
+
97
+ # prompt_template = """Given the following context and a question, generate an answer based on the context only.
98
+
99
+ # In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
100
+ # If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
101
+ # If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
102
+
103
+ # CONTEXT: {context}
104
+
105
+ # QUESTION: {question}"""
106
+
107
+ # PROMPT = PromptTemplate(
108
+ # template = prompt_template, input_variables = ["context", "question"]
109
+ # )
110
+
111
+ # from langchain.chains import RetrievalQA
112
+
113
+ # chain = RetrievalQA.from_chain_type(llm = llm,
114
+ # chain_type="stuff",
115
+ # retriever=retriever,
116
+ # input_key="query",
117
+ # return_source_documents=True,
118
+ # chain_type_kwargs = {"prompt": PROMPT})
119
+
120
+ # def chatresponse(message, history):
121
+ # output = chain(message)
122
+ # return output['result']
123
+
124
+ # gr.ChatInterface(chatresponse).launch()
125
+
126
+
127
  # import gradio as gr
128
  # from langchain.llms import GooglePalm
129