Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
# from langchain.llms import GooglePalm
|
4 |
-
|
5 |
-
# from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
-
# from langchain.vectorstores import FAISS
|
7 |
-
|
8 |
-
|
9 |
-
from langchain_community.llms import GooglePalm
|
10 |
-
from langchain_community.document_loaders import CSVLoader
|
11 |
-
from langchain_community.vectorstores import FAISS
|
12 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
|
14 |
|
15 |
api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
16 |
|
17 |
-
llm =
|
18 |
-
|
19 |
|
20 |
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
21 |
data = loader.load()
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
retriever = vectordb.as_retriever()
|
28 |
|
@@ -58,6 +63,67 @@ def chatresponse(message, history):
|
|
58 |
gr.ChatInterface(chatresponse).launch()
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# import gradio as gr
|
62 |
# from langchain.llms import GooglePalm
|
63 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
# from langchain.llms import GooglePalm
|
3 |
+
from langchain_google_genai import GoogleGenerativeAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
7 |
|
8 |
+
llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
|
9 |
+
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
10 |
|
11 |
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
12 |
data = loader.load()
|
13 |
|
14 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
+
from langchain.vectorstores import FAISS
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
# Suppress specific warnings if they are not critical
|
19 |
+
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
20 |
+
warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
|
21 |
+
|
22 |
+
# Define the embedding model
|
23 |
+
# Using a smaller model for demonstration purposes; adjust according to your needs
|
24 |
+
model_name = "BAAI/bge-m3"
|
25 |
|
26 |
+
# Initialize HuggingFace embeddings
|
27 |
+
instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
28 |
+
|
29 |
+
# Create FAISS vector store from documents
|
30 |
+
vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
|
31 |
|
32 |
retriever = vectordb.as_retriever()
|
33 |
|
|
|
63 |
gr.ChatInterface(chatresponse).launch()
|
64 |
|
65 |
|
66 |
+
|
67 |
+
# import gradio as gr
|
68 |
+
|
69 |
+
# # from langchain.llms import GooglePalm
|
70 |
+
# # from langchain.document_loaders.csv_loader import CSVLoader
|
71 |
+
# # from langchain_huggingface import HuggingFaceEmbeddings
|
72 |
+
# # from langchain.vectorstores import FAISS
|
73 |
+
|
74 |
+
|
75 |
+
# from langchain_community.llms import GooglePalm
|
76 |
+
# from langchain_community.document_loaders import CSVLoader
|
77 |
+
# from langchain_community.vectorstores import FAISS
|
78 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
79 |
+
|
80 |
+
|
81 |
+
# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
82 |
+
|
83 |
+
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
84 |
+
|
85 |
+
|
86 |
+
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
87 |
+
# data = loader.load()
|
88 |
+
|
89 |
+
|
90 |
+
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
|
91 |
+
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
|
92 |
+
|
93 |
+
# retriever = vectordb.as_retriever()
|
94 |
+
|
95 |
+
# from langchain.prompts import PromptTemplate
|
96 |
+
|
97 |
+
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
|
98 |
+
|
99 |
+
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
100 |
+
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
|
101 |
+
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
|
102 |
+
|
103 |
+
# CONTEXT: {context}
|
104 |
+
|
105 |
+
# QUESTION: {question}"""
|
106 |
+
|
107 |
+
# PROMPT = PromptTemplate(
|
108 |
+
# template = prompt_template, input_variables = ["context", "question"]
|
109 |
+
# )
|
110 |
+
|
111 |
+
# from langchain.chains import RetrievalQA
|
112 |
+
|
113 |
+
# chain = RetrievalQA.from_chain_type(llm = llm,
|
114 |
+
# chain_type="stuff",
|
115 |
+
# retriever=retriever,
|
116 |
+
# input_key="query",
|
117 |
+
# return_source_documents=True,
|
118 |
+
# chain_type_kwargs = {"prompt": PROMPT})
|
119 |
+
|
120 |
+
# def chatresponse(message, history):
|
121 |
+
# output = chain(message)
|
122 |
+
# return output['result']
|
123 |
+
|
124 |
+
# gr.ChatInterface(chatresponse).launch()
|
125 |
+
|
126 |
+
|
127 |
# import gradio as gr
|
128 |
# from langchain.llms import GooglePalm
|
129 |
|