File size: 9,888 Bytes
8bf58fb
bd6b050
deb59b3
dd0bd1a
 
 
 
 
 
907b68f
dd0bd1a
 
 
 
bd6b050
907b68f
 
 
7fcf7c5
9adf0de
7fcf7c5
1e07071
dd0bd1a
1e07071
9adf0de
deb59b3
762e024
dd0bd1a
762e024
 
 
dd0bd1a
deb59b3
 
 
762e024
dd0bd1a
 
deb59b3
 
 
 
762e024
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
 
762e024
 
 
 
 
 
 
 
044b65e
 
 
762e024
044b65e
deb59b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762e024
 
 
044b65e
762e024
044b65e
762e024
044b65e
762e024
044b65e
1e07071
044b65e
 
1e07071
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e07071
 
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
# from langchain.llms import GooglePalm
from langchain_google_genai import GoogleGenerativeAI
from langchain.document_loaders.csv_loader import CSVLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
import warnings
from huggingface_hub import login


# from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import pipeline

login(token="your_huggingface_api_token")


llm = pipeline("text-generation", model = "meta-llama/Meta-Llama-3-70B-Instruct")

# llm = pipeline("text-generation", model="mistralai/Mixtral-8x22B-Instruct-v0.1")

# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)

# LOADING CSV FILE
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()

# SUPPRESSING WARNINGS
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")


# EMBEDDING MODEL
model_name = "BAAI/bge-m3"
instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)

# Create FAISS vector store from documents
vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
retriever = vectordb.as_retriever()

prompt_template = """Given the following context and a question, generate an answer based on the context only.

In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

CONTEXT: {context}

QUESTION: {question}"""

PROMPT = PromptTemplate(
    template = prompt_template, input_variables = ["context", "question"]
)


chain = RetrievalQA.from_chain_type(llm = llm,
            chain_type="stuff",
            retriever=retriever,
            input_key="query",
            return_source_documents=True,
            chain_type_kwargs = {"prompt": PROMPT})

def chatresponse(message, history):
    output = chain(message)
    return output['result']

gr.ChatInterface(chatresponse).launch()



# import gradio as gr

# # from langchain.llms import GooglePalm
# # from langchain.document_loaders.csv_loader import CSVLoader
# # from langchain_huggingface import HuggingFaceEmbeddings
# # from langchain.vectorstores import FAISS


# from langchain_community.llms import GooglePalm
# from langchain_community.document_loaders import CSVLoader
# from langchain_community.vectorstores import FAISS
# from langchain_huggingface import HuggingFaceEmbeddings


# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# llm = GooglePalm(google_api_key = api_key, temperature=0.7)


# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()


# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

# retriever = vectordb.as_retriever()

# from langchain.prompts import PromptTemplate

# prompt_template = """Given the following context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

# CONTEXT: {context}

# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template = prompt_template, input_variables = ["context", "question"]
# )

# from langchain.chains import RetrievalQA

# chain = RetrievalQA.from_chain_type(llm = llm,
#             chain_type="stuff",
#             retriever=retriever,
#             input_key="query",
#             return_source_documents=True,
#             chain_type_kwargs = {"prompt": PROMPT})

# def chatresponse(message, history):
#     output = chain(message)
#     return output['result']

# gr.ChatInterface(chatresponse).launch()


# import gradio as gr
# from langchain.llms import GooglePalm

# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# llm = GooglePalm(google_api_key = api_key, temperature=0.7)

# from langchain.document_loaders.csv_loader import CSVLoader

# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS

# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# # instructor_embeddings = HuggingFaceEmbeddings()

# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

# # e = embeddings_model.embed_query("What is your refund policy")

# retriever = vectordb.as_retriever()

# from langchain.prompts import PromptTemplate

# prompt_template = """Given the following context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

# CONTEXT: {context}

# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template = prompt_template, input_variables = ["context", "question"]
# )

# from langchain.chains import RetrievalQA

# chain = RetrievalQA.from_chain_type(llm = llm,
#             chain_type="stuff",
#             retriever=retriever,
#             input_key="query",
#             return_source_documents=True,
#             chain_type_kwargs = {"prompt": PROMPT})

# # Load your LLM model and necessary components
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
# # For this example, we'll assume the model and chain function are already available

# def chatbot(query):
#     response = chain(query)
#     # Extract the 'result' part of the response
#     result = response.get('result', 'Sorry, I could not find an answer.')
#     return result

# # Define the Gradio interface
# iface = gr.Interface(
#     fn=chatbot,  # Function to call
#     inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."),  # Input type
#     outputs="text",  # Output type
#     title="Hugging Face LLM Chatbot",
#     description="Ask any question related to the documents and get an answer from the LLM model.",
# )

# # Launch the interface
# iface.launch()

# # Save this file as app.py and push it to your Hugging Face Space repository

# # import gradio as gr

# # def greet(name, intensity):
# #     return "Hello, " + name + "!" * int(intensity)

# # demo = gr.Interface(
# #     fn=greet,
# #     inputs=["text", "slider"],
# #     outputs=["text"],
# # )

# # demo.launch()


# # import gradio as gr
# # from huggingface_hub import InferenceClient

# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# # def respond(
# #     message,
# #     history: list[tuple[str, str]],
# #     system_message,
# #     max_tokens,
# #     temperature,
# #     top_p,
# # ):
# #     messages = [{"role": "system", "content": system_message}]

# #     for val in history:
# #         if val[0]:
# #             messages.append({"role": "user", "content": val[0]})
# #         if val[1]:
# #             messages.append({"role": "assistant", "content": val[1]})

# #     messages.append({"role": "user", "content": message})

# #     response = ""

# #     for message in client.chat_completion(
# #         messages,
# #         max_tokens=max_tokens,
# #         stream=True,
# #         temperature=temperature,
# #         top_p=top_p,
# #     ):
# #         token = message.choices[0].delta.content

# #         response += token
# #         yield response

# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# #     respond,
# #     additional_inputs=[
# #         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# #         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# #         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# #         gr.Slider(
# #             minimum=0.1,
# #             maximum=1.0,
# #             value=0.95,
# #             step=0.05,
# #             label="Top-p (nucleus sampling)",
# #         ),
# #     ],
# # )


# # if __name__ == "__main__":
# #     demo.launch()