Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,148 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from
|
4 |
-
from langchain.document_loaders.csv_loader import CSVLoader
|
5 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from langchain.chains import RetrievalQA
|
|
|
9 |
import warnings
|
10 |
from huggingface_hub import login
|
11 |
import os
|
12 |
-
|
13 |
-
|
14 |
from transformers import pipeline
|
15 |
-
llm = pipeline("feature-extraction", model="mixedbread-ai/mxbai-embed-large-v1")
|
16 |
-
|
17 |
-
# from transformers import AutoModel
|
18 |
-
# llm = AutoModel.from_pretrained("Alibaba-NLP/gte-large-en-v1.5", trust_remote_code=True)
|
19 |
-
|
20 |
-
# LLAMA
|
21 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
22 |
-
# from transformers import pipeline
|
23 |
-
|
24 |
-
# hf_token = os.environ['llama_token']
|
25 |
-
|
26 |
-
# login(token=hf_token)
|
27 |
-
|
28 |
-
# llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")
|
29 |
-
# llm = pipeline("text-generation", model = "meta-llama/Meta-Llama-3-70B-Instruct")
|
30 |
-
|
31 |
-
# MISTRAL
|
32 |
-
# llm = pipeline("text-generation", model="mistralai/Mixtral-8x22B-Instruct-v0.1")
|
33 |
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
# llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
|
39 |
-
# llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
40 |
-
|
41 |
-
# LOADING CSV FILE
|
42 |
-
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
43 |
data = loader.load()
|
44 |
|
45 |
-
#
|
46 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
47 |
warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
|
48 |
|
49 |
-
|
50 |
-
# EMBEDDING MODEL
|
51 |
model_name = "BAAI/bge-m3"
|
52 |
-
instructor_embeddings =
|
53 |
|
54 |
# Create FAISS vector store from documents
|
55 |
vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
|
56 |
retriever = vectordb.as_retriever()
|
57 |
|
|
|
58 |
prompt_template = """Given the following context and a question, generate an answer based on the context only.
|
59 |
-
|
60 |
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
61 |
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
|
62 |
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
|
63 |
-
|
64 |
CONTEXT: {context}
|
65 |
-
|
66 |
QUESTION: {question}"""
|
67 |
|
68 |
PROMPT = PromptTemplate(
|
69 |
-
template
|
70 |
)
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
chain_type="stuff",
|
75 |
-
retriever=retriever,
|
76 |
-
input_key="query",
|
77 |
-
return_source_documents=True,
|
78 |
-
chain_type_kwargs = {"prompt": PROMPT})
|
79 |
-
|
80 |
def chatresponse(message, history):
|
81 |
output = chain(message)
|
82 |
return output['result']
|
83 |
|
|
|
84 |
gr.ChatInterface(chatresponse).launch()
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# import gradio as gr
|
89 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.document_loaders import CSVLoader # Changed import
|
3 |
+
from langchain_community.vectorstores import FAISS # Changed import
|
|
|
|
|
|
|
4 |
from langchain.prompts import PromptTemplate
|
5 |
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.llms import HuggingFaceLLM # Adjusted for correct instantiation
|
7 |
import warnings
|
8 |
from huggingface_hub import login
|
9 |
import os
|
|
|
|
|
10 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Initialize the LLM using pipeline
|
13 |
+
llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct") # Adjusted initialization
|
14 |
|
15 |
+
# Load CSV file
|
16 |
+
loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column='prompt')
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
data = loader.load()
|
18 |
|
19 |
+
# Suppress warnings
|
20 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
21 |
warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
|
22 |
|
23 |
+
# Embedding model
|
|
|
24 |
model_name = "BAAI/bge-m3"
|
25 |
+
instructor_embeddings = HuggingFaceLLM(model_name=model_name) # Adjusted for correct instantiation
|
26 |
|
27 |
# Create FAISS vector store from documents
|
28 |
vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
|
29 |
retriever = vectordb.as_retriever()
|
30 |
|
31 |
+
# Define the prompt template
|
32 |
prompt_template = """Given the following context and a question, generate an answer based on the context only.
|
|
|
33 |
In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
34 |
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
|
35 |
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
|
|
|
36 |
CONTEXT: {context}
|
|
|
37 |
QUESTION: {question}"""
|
38 |
|
39 |
PROMPT = PromptTemplate(
|
40 |
+
template=prompt_template, input_variables=["context", "question"]
|
41 |
)
|
42 |
|
43 |
+
# Initialize the RetrievalQA chain
|
44 |
+
chain = RetrievalQA.from_chain_type(llm=llm, # Adjusted initialization
|
45 |
+
chain_type="stuff",
|
46 |
+
retriever=retriever,
|
47 |
+
input_key="query",
|
48 |
+
return_source_documents=True,
|
49 |
+
chain_type_kwargs={"prompt": PROMPT})
|
50 |
|
51 |
+
# Define the chat response function
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def chatresponse(message, history):
|
53 |
output = chain(message)
|
54 |
return output['result']
|
55 |
|
56 |
+
# Launch the Gradio chat interface
|
57 |
gr.ChatInterface(chatresponse).launch()
|
58 |
|
59 |
|
60 |
+
# import gradio as gr
|
61 |
+
# # from langchain.llms import GooglePalm
|
62 |
+
# from langchain_google_genai import GoogleGenerativeAI
|
63 |
+
# from langchain.document_loaders.csv_loader import CSVLoader
|
64 |
+
# from langchain_huggingface import HuggingFaceEmbeddings
|
65 |
+
# from langchain.vectorstores import FAISS
|
66 |
+
# from langchain.prompts import PromptTemplate
|
67 |
+
# from langchain.chains import RetrievalQA
|
68 |
+
# import warnings
|
69 |
+
# from huggingface_hub import login
|
70 |
+
# import os
|
71 |
+
|
72 |
+
|
73 |
+
# from transformers import pipeline
|
74 |
+
# llm = pipeline("feature-extraction", model="mixedbread-ai/mxbai-embed-large-v1")
|
75 |
+
|
76 |
+
# # from transformers import AutoModel
|
77 |
+
# # llm = AutoModel.from_pretrained("Alibaba-NLP/gte-large-en-v1.5", trust_remote_code=True)
|
78 |
+
|
79 |
+
# # LLAMA
|
80 |
+
# # from transformers import AutoModelForCausalLM, AutoTokenizer
|
81 |
+
# # from transformers import pipeline
|
82 |
+
|
83 |
+
# # hf_token = os.environ['llama_token']
|
84 |
+
|
85 |
+
# # login(token=hf_token)
|
86 |
+
|
87 |
+
# # llm = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct")
|
88 |
+
# # llm = pipeline("text-generation", model = "meta-llama/Meta-Llama-3-70B-Instruct")
|
89 |
+
|
90 |
+
# # MISTRAL
|
91 |
+
# # llm = pipeline("text-generation", model="mistralai/Mixtral-8x22B-Instruct-v0.1")
|
92 |
+
|
93 |
+
|
94 |
+
# # TO USE GOOGLE MODELS
|
95 |
+
# # api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
|
96 |
+
|
97 |
+
# # llm = GoogleGenerativeAI(model="models/text-bison-001", google_api_key=api_key)
|
98 |
+
# # llm = GooglePalm(google_api_key = api_key, temperature=0.7)
|
99 |
+
|
100 |
+
# # LOADING CSV FILE
|
101 |
+
# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
|
102 |
+
# data = loader.load()
|
103 |
+
|
104 |
+
# # SUPPRESSING WARNINGS
|
105 |
+
# warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
106 |
+
# warnings.filterwarnings("ignore", category=FutureWarning, message="`resume_download` is deprecated")
|
107 |
+
|
108 |
+
|
109 |
+
# # EMBEDDING MODEL
|
110 |
+
# model_name = "BAAI/bge-m3"
|
111 |
+
# instructor_embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
112 |
+
|
113 |
+
# # Create FAISS vector store from documents
|
114 |
+
# vectordb = FAISS.from_documents(documents=data, embedding=instructor_embeddings)
|
115 |
+
# retriever = vectordb.as_retriever()
|
116 |
+
|
117 |
+
# prompt_template = """Given the following context and a question, generate an answer based on the context only.
|
118 |
+
|
119 |
+
# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
|
120 |
+
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
|
121 |
+
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
|
122 |
+
|
123 |
+
# CONTEXT: {context}
|
124 |
+
|
125 |
+
# QUESTION: {question}"""
|
126 |
+
|
127 |
+
# PROMPT = PromptTemplate(
|
128 |
+
# template = prompt_template, input_variables = ["context", "question"]
|
129 |
+
# )
|
130 |
+
|
131 |
+
|
132 |
+
# chain = RetrievalQA.from_chain_type(llm = llm,
|
133 |
+
# chain_type="stuff",
|
134 |
+
# retriever=retriever,
|
135 |
+
# input_key="query",
|
136 |
+
# return_source_documents=True,
|
137 |
+
# chain_type_kwargs = {"prompt": PROMPT})
|
138 |
+
|
139 |
+
# def chatresponse(message, history):
|
140 |
+
# output = chain(message)
|
141 |
+
# return output['result']
|
142 |
+
|
143 |
+
# gr.ChatInterface(chatresponse).launch()
|
144 |
+
|
145 |
+
|
146 |
|
147 |
# import gradio as gr
|
148 |
|