Spaces:
Runtime error
Runtime error
Commit
·
85574a0
1
Parent(s):
76b43c9
Add app.py with model predictor
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
5 |
+
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("uhhlt/bert-based-uncased-hatespeech-movies")
|
7 |
+
|
8 |
+
model = TFAutoModelForSequenceClassification.from_pretrained("uhhlt/bert-based-uncased-hatespeech-movies")
|
9 |
+
|
10 |
+
def make_prediction(text):
|
11 |
+
'''
|
12 |
+
This function takes a string as input and returns a prediction for the hate speech class.
|
13 |
+
Hate speech class labels are: Normal(0), Offensive(1), and Hate speech(2).
|
14 |
+
|
15 |
+
Parameters:
|
16 |
+
text (str): The text to be classified.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
str: The predicted class label.
|
20 |
+
'''
|
21 |
+
input_ids = tokenizer.encode(text)
|
22 |
+
input_ids = np.array(input_ids)
|
23 |
+
input_ids = np.expand_dims(input_ids, axis=0)
|
24 |
+
prediction_arr = model.predict(input_ids)[0][0]
|
25 |
+
|
26 |
+
labels = ["Normal", "Offensive", "Hate Speech"]
|
27 |
+
prediction = labels[np.argmax(prediction_arr)]
|
28 |
+
return prediction
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=make_prediction,
|
34 |
+
inputs=gr.inputs.Textbox(lines=3, placeholder="Enter your text here..."),
|
35 |
+
outputs="text",
|
36 |
+
title="Hate Speech Detector",
|
37 |
+
description="A model for detecting if a given text is an hate speech.",
|
38 |
+
)
|
39 |
+
iface.launch()
|