Spaces:
Sleeping
Sleeping
File size: 6,203 Bytes
f4634b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
Mostly copy-paste from DETR (https://github.com/facebookresearch/detr).
"""
import math
import os
import sys
from typing import Iterable
import torch
import crowd_counter.util.misc as utils
from crowd_counter.util.misc import NestedTensor
import numpy as np
import time
import torchvision.transforms as standard_transforms
import cv2
class DeNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
for t, m, s in zip(tensor, self.mean, self.std):
t.mul_(s).add_(m)
return tensor
def vis(samples, targets, pred, vis_dir, des=None):
'''
samples -> tensor: [batch, 3, H, W]
targets -> list of dict: [{'points':[], 'image_id': str}]
pred -> list: [num_preds, 2]
'''
gts = [t['point'].tolist() for t in targets]
pil_to_tensor = standard_transforms.ToTensor()
restore_transform = standard_transforms.Compose([
DeNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
standard_transforms.ToPILImage()
])
# draw one by one
for idx in range(samples.shape[0]):
sample = restore_transform(samples[idx])
sample = pil_to_tensor(sample.convert('RGB')).numpy() * 255
sample_gt = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
sample_pred = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
max_len = np.max(sample_gt.shape)
size = 2
# draw gt
for t in gts[idx]:
sample_gt = cv2.circle(sample_gt, (int(t[0]), int(t[1])), size, (0, 255, 0), -1)
# draw predictions
for p in pred[idx]:
sample_pred = cv2.circle(sample_pred, (int(p[0]), int(p[1])), size, (0, 0, 255), -1)
name = targets[idx]['image_id']
# save the visualized images
if des is not None:
cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_gt.jpg'.format(int(name),
des, len(gts[idx]), len(pred[idx]))), sample_gt)
cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_pred.jpg'.format(int(name),
des, len(gts[idx]), len(pred[idx]))), sample_pred)
else:
cv2.imwrite(
os.path.join(vis_dir, '{}_gt_{}_pred_{}_gt.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
sample_gt)
cv2.imwrite(
os.path.join(vis_dir, '{}_gt_{}_pred_{}_pred.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
sample_pred)
# the training routine
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0):
model.train()
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
# iterate all training samples
for samples, targets in data_loader:
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# forward
outputs = model(samples)
# calc the losses
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
# reduce all losses
loss_dict_reduced = utils.reduce_dict(loss_dict)
loss_dict_reduced_unscaled = {f'{k}_unscaled': v
for k, v in loss_dict_reduced.items()}
loss_dict_reduced_scaled = {k: v * weight_dict[k]
for k, v in loss_dict_reduced.items() if k in weight_dict}
losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())
loss_value = losses_reduced_scaled.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
# backward
optimizer.zero_grad()
losses.backward()
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
# update logger
metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
# the inference routine
@torch.no_grad()
def evaluate_crowd_no_overlap(model, data_loader, device, vis_dir=None):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
# run inference on all images to calc MAE
maes = []
mses = []
for samples, targets in data_loader:
samples = samples.to(device)
outputs = model(samples)
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
gt_cnt = targets[0]['point'].shape[0]
# 0.5 is used by default
threshold = 0.5
points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
predict_cnt = int((outputs_scores > threshold).sum())
# if specified, save the visualized images
if vis_dir is not None:
vis(samples, targets, [points], vis_dir)
# accumulate MAE, MSE
mae = abs(predict_cnt - gt_cnt)
mse = (predict_cnt - gt_cnt) * (predict_cnt - gt_cnt)
maes.append(float(mae))
mses.append(float(mse))
# calc MAE, MSE
mae = np.mean(maes)
mse = np.sqrt(np.mean(mses))
return mae, mse |