File size: 6,203 Bytes
f4634b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Train and eval functions used in main.py
Mostly copy-paste from DETR (https://github.com/facebookresearch/detr).
"""
import math
import os
import sys
from typing import Iterable

import torch

import crowd_counter.util.misc as utils
from crowd_counter.util.misc import NestedTensor
import numpy as np
import time
import torchvision.transforms as standard_transforms
import cv2

class DeNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        for t, m, s in zip(tensor, self.mean, self.std):
            t.mul_(s).add_(m)
        return tensor

def vis(samples, targets, pred, vis_dir, des=None):
    '''
    samples -> tensor: [batch, 3, H, W]
    targets -> list of dict: [{'points':[], 'image_id': str}]
    pred -> list: [num_preds, 2]
    '''
    gts = [t['point'].tolist() for t in targets]

    pil_to_tensor = standard_transforms.ToTensor()

    restore_transform = standard_transforms.Compose([
        DeNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        standard_transforms.ToPILImage()
    ])
    # draw one by one
    for idx in range(samples.shape[0]):
        sample = restore_transform(samples[idx])
        sample = pil_to_tensor(sample.convert('RGB')).numpy() * 255
        sample_gt = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()
        sample_pred = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy()

        max_len = np.max(sample_gt.shape)

        size = 2
        # draw gt
        for t in gts[idx]:
            sample_gt = cv2.circle(sample_gt, (int(t[0]), int(t[1])), size, (0, 255, 0), -1)
        # draw predictions
        for p in pred[idx]:
            sample_pred = cv2.circle(sample_pred, (int(p[0]), int(p[1])), size, (0, 0, 255), -1)

        name = targets[idx]['image_id']
        # save the visualized images
        if des is not None:
            cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_gt.jpg'.format(int(name), 
                                                des, len(gts[idx]), len(pred[idx]))), sample_gt)
            cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_pred.jpg'.format(int(name), 
                                                des, len(gts[idx]), len(pred[idx]))), sample_pred)
        else:
            cv2.imwrite(
                os.path.join(vis_dir, '{}_gt_{}_pred_{}_gt.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
                sample_gt)
            cv2.imwrite(
                os.path.join(vis_dir, '{}_gt_{}_pred_{}_pred.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))),
                sample_pred)

# the training routine
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, max_norm: float = 0):
    model.train()
    criterion.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    # iterate all training samples
    for samples, targets in data_loader:
        samples = samples.to(device)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        # forward
        outputs = model(samples)
        # calc the losses
        loss_dict = criterion(outputs, targets)
        weight_dict = criterion.weight_dict
        losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)

        # reduce all losses
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        loss_dict_reduced_unscaled = {f'{k}_unscaled': v
                                      for k, v in loss_dict_reduced.items()}
        loss_dict_reduced_scaled = {k: v * weight_dict[k]
                                    for k, v in loss_dict_reduced.items() if k in weight_dict}
        losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())

        loss_value = losses_reduced_scaled.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            print(loss_dict_reduced)
            sys.exit(1)
        # backward
        optimizer.zero_grad()
        losses.backward()
        if max_norm > 0:
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
        optimizer.step()
        # update logger
        metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}

# the inference routine
@torch.no_grad()
def evaluate_crowd_no_overlap(model, data_loader, device, vis_dir=None):
    model.eval()

    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
    # run inference on all images to calc MAE
    maes = []
    mses = []
    for samples, targets in data_loader:
        samples = samples.to(device)

        outputs = model(samples)
        outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]

        outputs_points = outputs['pred_points'][0]

        gt_cnt = targets[0]['point'].shape[0]
        # 0.5 is used by default
        threshold = 0.5

        points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
        predict_cnt = int((outputs_scores > threshold).sum())
        # if specified, save the visualized images
        if vis_dir is not None: 
            vis(samples, targets, [points], vis_dir)
        # accumulate MAE, MSE
        mae = abs(predict_cnt - gt_cnt)
        mse = (predict_cnt - gt_cnt) * (predict_cnt - gt_cnt)
        maes.append(float(mae))
        mses.append(float(mse))
    # calc MAE, MSE
    mae = np.mean(maes)
    mse = np.sqrt(np.mean(mses))

    return mae, mse