File size: 13,262 Bytes
f4634b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch
import torch.nn.functional as F
from torch import nn

from crowd_counter.util.misc import (NestedTensor, nested_tensor_from_tensor_list,
                       accuracy, get_world_size, interpolate,
                       is_dist_avail_and_initialized)

from .backbone import build_backbone
from .matcher import build_matcher_crowd

import numpy as np
import time

# the network frmawork of the regression branch
class RegressionModel(nn.Module):
    def __init__(self, num_features_in, num_anchor_points=4, feature_size=256):
        super(RegressionModel, self).__init__()

        self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
        self.act1 = nn.ReLU()

        self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act2 = nn.ReLU()

        self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act3 = nn.ReLU()

        self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act4 = nn.ReLU()

        self.output = nn.Conv2d(feature_size, num_anchor_points * 2, kernel_size=3, padding=1)
    # sub-branch forward
    def forward(self, x):
        out = self.conv1(x)
        out = self.act1(out)

        out = self.conv2(out)
        out = self.act2(out)

        out = self.output(out)

        out = out.permute(0, 2, 3, 1)

        return out.contiguous().view(out.shape[0], -1, 2)

# the network frmawork of the classification branch
class ClassificationModel(nn.Module):
    def __init__(self, num_features_in, num_anchor_points=4, num_classes=80, prior=0.01, feature_size=256):
        super(ClassificationModel, self).__init__()

        self.num_classes = num_classes
        self.num_anchor_points = num_anchor_points

        self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
        self.act1 = nn.ReLU()

        self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act2 = nn.ReLU()

        self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act3 = nn.ReLU()

        self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
        self.act4 = nn.ReLU()

        self.output = nn.Conv2d(feature_size, num_anchor_points * num_classes, kernel_size=3, padding=1)
        self.output_act = nn.Sigmoid()
    # sub-branch forward
    def forward(self, x):
        out = self.conv1(x)
        out = self.act1(out)

        out = self.conv2(out)
        out = self.act2(out)

        out = self.output(out)

        out1 = out.permute(0, 2, 3, 1)

        batch_size, width, height, _ = out1.shape

        out2 = out1.view(batch_size, width, height, self.num_anchor_points, self.num_classes)

        return out2.contiguous().view(x.shape[0], -1, self.num_classes)

# generate the reference points in grid layout
def generate_anchor_points(stride=16, row=3, line=3):
    row_step = stride / row
    line_step = stride / line

    shift_x = (np.arange(1, line + 1) - 0.5) * line_step - stride / 2
    shift_y = (np.arange(1, row + 1) - 0.5) * row_step - stride / 2

    shift_x, shift_y = np.meshgrid(shift_x, shift_y)

    anchor_points = np.vstack((
        shift_x.ravel(), shift_y.ravel()
    )).transpose()

    return anchor_points
# shift the meta-anchor to get an acnhor points
def shift(shape, stride, anchor_points):
    shift_x = (np.arange(0, shape[1]) + 0.5) * stride
    shift_y = (np.arange(0, shape[0]) + 0.5) * stride

    shift_x, shift_y = np.meshgrid(shift_x, shift_y)

    shifts = np.vstack((
        shift_x.ravel(), shift_y.ravel()
    )).transpose()

    A = anchor_points.shape[0]
    K = shifts.shape[0]
    all_anchor_points = (anchor_points.reshape((1, A, 2)) + shifts.reshape((1, K, 2)).transpose((1, 0, 2)))
    all_anchor_points = all_anchor_points.reshape((K * A, 2))

    return all_anchor_points

# this class generate all reference points on all pyramid levels
class AnchorPoints(nn.Module):
    def __init__(self, pyramid_levels=None, strides=None, row=3, line=3):
        super(AnchorPoints, self).__init__()

        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]
        else:
            self.pyramid_levels = pyramid_levels

        if strides is None:
            self.strides = [2 ** x for x in self.pyramid_levels]

        self.row = row
        self.line = line

    def forward(self, image):
        image_shape = image.shape[2:]
        image_shape = np.array(image_shape)
        image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]

        all_anchor_points = np.zeros((0, 2)).astype(np.float32)
        # get reference points for each level
        for idx, p in enumerate(self.pyramid_levels):
            anchor_points = generate_anchor_points(2**p, row=self.row, line=self.line)
            shifted_anchor_points = shift(image_shapes[idx], self.strides[idx], anchor_points)
            all_anchor_points = np.append(all_anchor_points, shifted_anchor_points, axis=0)

        all_anchor_points = np.expand_dims(all_anchor_points, axis=0)
        # send reference points to device
        if torch.cuda.is_available():
            return torch.from_numpy(all_anchor_points.astype(np.float32)).cuda()
        else:
            return torch.from_numpy(all_anchor_points.astype(np.float32))

class Decoder(nn.Module):
    def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
        super(Decoder, self).__init__()

        # upsample C5 to get P5 from the FPN paper
        self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
        self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # add P5 elementwise to C4
        self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
        self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)

        # add P4 elementwise to C3
        self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
        self.P3_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
        self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)


    def forward(self, inputs):
        C3, C4, C5 = inputs

        P5_x = self.P5_1(C5)
        P5_upsampled_x = self.P5_upsampled(P5_x)
        P5_x = self.P5_2(P5_x)

        P4_x = self.P4_1(C4)
        P4_x = P5_upsampled_x + P4_x
        P4_upsampled_x = self.P4_upsampled(P4_x)
        P4_x = self.P4_2(P4_x)

        P3_x = self.P3_1(C3)
        P3_x = P3_x + P4_upsampled_x
        P3_x = self.P3_2(P3_x)

        return [P3_x, P4_x, P5_x]

# the defenition of the P2PNet model
class P2PNet(nn.Module):
    def __init__(self, backbone, row=2, line=2):
        super().__init__()
        self.backbone = backbone
        self.num_classes = 2
        # the number of all anchor points
        num_anchor_points = row * line

        self.regression = RegressionModel(num_features_in=256, num_anchor_points=num_anchor_points)
        self.classification = ClassificationModel(num_features_in=256, \
                                            num_classes=self.num_classes, \
                                            num_anchor_points=num_anchor_points)

        self.anchor_points = AnchorPoints(pyramid_levels=[3,], row=row, line=line)

        self.fpn = Decoder(256, 512, 512)

    def forward(self, samples: NestedTensor):
        # get the backbone features
        features = self.backbone(samples)
        # forward the feature pyramid
        features_fpn = self.fpn([features[1], features[2], features[3]])

        batch_size = features[0].shape[0]
        # run the regression and classification branch
        regression = self.regression(features_fpn[1]) * 100 # 8x
        classification = self.classification(features_fpn[1])
        anchor_points = self.anchor_points(samples).repeat(batch_size, 1, 1)
        # decode the points as prediction
        output_coord = regression + anchor_points
        output_class = classification
        out = {'pred_logits': output_class, 'pred_points': output_coord}
       
        return out

class SetCriterion_Crowd(nn.Module):

    def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
        """ Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            eos_coef: relative classification weight applied to the no-object category
            losses: list of all the losses to be applied. See get_loss for list of available losses.
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.eos_coef = eos_coef
        self.losses = losses
        empty_weight = torch.ones(self.num_classes + 1)
        empty_weight[0] = self.eos_coef
        self.register_buffer('empty_weight', empty_weight)

    def loss_labels(self, outputs, targets, indices, num_points):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], 0,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
        losses = {'loss_ce': loss_ce}

        return losses

    def loss_points(self, outputs, targets, indices, num_points):

        assert 'pred_points' in outputs
        idx = self._get_src_permutation_idx(indices)
        src_points = outputs['pred_points'][idx]
        target_points = torch.cat([t['point'][i] for t, (_, i) in zip(targets, indices)], dim=0)

        loss_bbox = F.mse_loss(src_points, target_points, reduction='none')

        losses = {}
        losses['loss_point'] = loss_bbox.sum() / num_points

        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_points, **kwargs):
        loss_map = {
            'labels': self.loss_labels,
            'points': self.loss_points,
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, num_points, **kwargs)

    def forward(self, outputs, targets):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        output1 = {'pred_logits': outputs['pred_logits'], 'pred_points': outputs['pred_points']}

        indices1 = self.matcher(output1, targets)

        num_points = sum(len(t["labels"]) for t in targets)
        num_points = torch.as_tensor([num_points], dtype=torch.float, device=next(iter(output1.values())).device)
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_points)
        num_boxes = torch.clamp(num_points / get_world_size(), min=1).item()

        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, output1, targets, indices1, num_boxes))

        return losses

# create the P2PNet model
def build(args, training):
    # treats persons as a single class
    num_classes = 1

    backbone = build_backbone(args)
    model = P2PNet(backbone, args.row, args.line)
    if not training: 
        return model

    weight_dict = {'loss_ce': 1, 'loss_points': args.point_loss_coef}
    losses = ['labels', 'points']
    matcher = build_matcher_crowd(args)
    criterion = SetCriterion_Crowd(num_classes, \
                                matcher=matcher, weight_dict=weight_dict, \
                                eos_coef=args.eos_coef, losses=losses)

    return model, criterion