Spaces:
Sleeping
Sleeping
File size: 13,262 Bytes
f4634b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import torch
import torch.nn.functional as F
from torch import nn
from crowd_counter.util.misc import (NestedTensor, nested_tensor_from_tensor_list,
accuracy, get_world_size, interpolate,
is_dist_avail_and_initialized)
from .backbone import build_backbone
from .matcher import build_matcher_crowd
import numpy as np
import time
# the network frmawork of the regression branch
class RegressionModel(nn.Module):
def __init__(self, num_features_in, num_anchor_points=4, feature_size=256):
super(RegressionModel, self).__init__()
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchor_points * 2, kernel_size=3, padding=1)
# sub-branch forward
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.output(out)
out = out.permute(0, 2, 3, 1)
return out.contiguous().view(out.shape[0], -1, 2)
# the network frmawork of the classification branch
class ClassificationModel(nn.Module):
def __init__(self, num_features_in, num_anchor_points=4, num_classes=80, prior=0.01, feature_size=256):
super(ClassificationModel, self).__init__()
self.num_classes = num_classes
self.num_anchor_points = num_anchor_points
self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1)
self.act1 = nn.ReLU()
self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act2 = nn.ReLU()
self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act3 = nn.ReLU()
self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1)
self.act4 = nn.ReLU()
self.output = nn.Conv2d(feature_size, num_anchor_points * num_classes, kernel_size=3, padding=1)
self.output_act = nn.Sigmoid()
# sub-branch forward
def forward(self, x):
out = self.conv1(x)
out = self.act1(out)
out = self.conv2(out)
out = self.act2(out)
out = self.output(out)
out1 = out.permute(0, 2, 3, 1)
batch_size, width, height, _ = out1.shape
out2 = out1.view(batch_size, width, height, self.num_anchor_points, self.num_classes)
return out2.contiguous().view(x.shape[0], -1, self.num_classes)
# generate the reference points in grid layout
def generate_anchor_points(stride=16, row=3, line=3):
row_step = stride / row
line_step = stride / line
shift_x = (np.arange(1, line + 1) - 0.5) * line_step - stride / 2
shift_y = (np.arange(1, row + 1) - 0.5) * row_step - stride / 2
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
anchor_points = np.vstack((
shift_x.ravel(), shift_y.ravel()
)).transpose()
return anchor_points
# shift the meta-anchor to get an acnhor points
def shift(shape, stride, anchor_points):
shift_x = (np.arange(0, shape[1]) + 0.5) * stride
shift_y = (np.arange(0, shape[0]) + 0.5) * stride
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shifts = np.vstack((
shift_x.ravel(), shift_y.ravel()
)).transpose()
A = anchor_points.shape[0]
K = shifts.shape[0]
all_anchor_points = (anchor_points.reshape((1, A, 2)) + shifts.reshape((1, K, 2)).transpose((1, 0, 2)))
all_anchor_points = all_anchor_points.reshape((K * A, 2))
return all_anchor_points
# this class generate all reference points on all pyramid levels
class AnchorPoints(nn.Module):
def __init__(self, pyramid_levels=None, strides=None, row=3, line=3):
super(AnchorPoints, self).__init__()
if pyramid_levels is None:
self.pyramid_levels = [3, 4, 5, 6, 7]
else:
self.pyramid_levels = pyramid_levels
if strides is None:
self.strides = [2 ** x for x in self.pyramid_levels]
self.row = row
self.line = line
def forward(self, image):
image_shape = image.shape[2:]
image_shape = np.array(image_shape)
image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels]
all_anchor_points = np.zeros((0, 2)).astype(np.float32)
# get reference points for each level
for idx, p in enumerate(self.pyramid_levels):
anchor_points = generate_anchor_points(2**p, row=self.row, line=self.line)
shifted_anchor_points = shift(image_shapes[idx], self.strides[idx], anchor_points)
all_anchor_points = np.append(all_anchor_points, shifted_anchor_points, axis=0)
all_anchor_points = np.expand_dims(all_anchor_points, axis=0)
# send reference points to device
if torch.cuda.is_available():
return torch.from_numpy(all_anchor_points.astype(np.float32)).cuda()
else:
return torch.from_numpy(all_anchor_points.astype(np.float32))
class Decoder(nn.Module):
def __init__(self, C3_size, C4_size, C5_size, feature_size=256):
super(Decoder, self).__init__()
# upsample C5 to get P5 from the FPN paper
self.P5_1 = nn.Conv2d(C5_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P5_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P5_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
# add P5 elementwise to C4
self.P4_1 = nn.Conv2d(C4_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P4_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P4_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
# add P4 elementwise to C3
self.P3_1 = nn.Conv2d(C3_size, feature_size, kernel_size=1, stride=1, padding=0)
self.P3_upsampled = nn.Upsample(scale_factor=2, mode='nearest')
self.P3_2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, stride=1, padding=1)
def forward(self, inputs):
C3, C4, C5 = inputs
P5_x = self.P5_1(C5)
P5_upsampled_x = self.P5_upsampled(P5_x)
P5_x = self.P5_2(P5_x)
P4_x = self.P4_1(C4)
P4_x = P5_upsampled_x + P4_x
P4_upsampled_x = self.P4_upsampled(P4_x)
P4_x = self.P4_2(P4_x)
P3_x = self.P3_1(C3)
P3_x = P3_x + P4_upsampled_x
P3_x = self.P3_2(P3_x)
return [P3_x, P4_x, P5_x]
# the defenition of the P2PNet model
class P2PNet(nn.Module):
def __init__(self, backbone, row=2, line=2):
super().__init__()
self.backbone = backbone
self.num_classes = 2
# the number of all anchor points
num_anchor_points = row * line
self.regression = RegressionModel(num_features_in=256, num_anchor_points=num_anchor_points)
self.classification = ClassificationModel(num_features_in=256, \
num_classes=self.num_classes, \
num_anchor_points=num_anchor_points)
self.anchor_points = AnchorPoints(pyramid_levels=[3,], row=row, line=line)
self.fpn = Decoder(256, 512, 512)
def forward(self, samples: NestedTensor):
# get the backbone features
features = self.backbone(samples)
# forward the feature pyramid
features_fpn = self.fpn([features[1], features[2], features[3]])
batch_size = features[0].shape[0]
# run the regression and classification branch
regression = self.regression(features_fpn[1]) * 100 # 8x
classification = self.classification(features_fpn[1])
anchor_points = self.anchor_points(samples).repeat(batch_size, 1, 1)
# decode the points as prediction
output_coord = regression + anchor_points
output_class = classification
out = {'pred_logits': output_class, 'pred_points': output_coord}
return out
class SetCriterion_Crowd(nn.Module):
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[0] = self.eos_coef
self.register_buffer('empty_weight', empty_weight)
def loss_labels(self, outputs, targets, indices, num_points):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(src_logits.shape[:2], 0,
dtype=torch.int64, device=src_logits.device)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {'loss_ce': loss_ce}
return losses
def loss_points(self, outputs, targets, indices, num_points):
assert 'pred_points' in outputs
idx = self._get_src_permutation_idx(indices)
src_points = outputs['pred_points'][idx]
target_points = torch.cat([t['point'][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = F.mse_loss(src_points, target_points, reduction='none')
losses = {}
losses['loss_point'] = loss_bbox.sum() / num_points
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_points, **kwargs):
loss_map = {
'labels': self.loss_labels,
'points': self.loss_points,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_points, **kwargs)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
output1 = {'pred_logits': outputs['pred_logits'], 'pred_points': outputs['pred_points']}
indices1 = self.matcher(output1, targets)
num_points = sum(len(t["labels"]) for t in targets)
num_points = torch.as_tensor([num_points], dtype=torch.float, device=next(iter(output1.values())).device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_points)
num_boxes = torch.clamp(num_points / get_world_size(), min=1).item()
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, output1, targets, indices1, num_boxes))
return losses
# create the P2PNet model
def build(args, training):
# treats persons as a single class
num_classes = 1
backbone = build_backbone(args)
model = P2PNet(backbone, args.row, args.line)
if not training:
return model
weight_dict = {'loss_ce': 1, 'loss_points': args.point_loss_coef}
losses = ['labels', 'points']
matcher = build_matcher_crowd(args)
criterion = SetCriterion_Crowd(num_classes, \
matcher=matcher, weight_dict=weight_dict, \
eos_coef=args.eos_coef, losses=losses)
return model, criterion |