# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Train and eval functions used in main.py Mostly copy-paste from DETR (https://github.com/facebookresearch/detr). """ import math import os import sys from typing import Iterable import torch import crowd_counter.util.misc as utils from crowd_counter.util.misc import NestedTensor import numpy as np import time import torchvision.transforms as standard_transforms import cv2 class DeNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor def vis(samples, targets, pred, vis_dir, des=None): ''' samples -> tensor: [batch, 3, H, W] targets -> list of dict: [{'points':[], 'image_id': str}] pred -> list: [num_preds, 2] ''' gts = [t['point'].tolist() for t in targets] pil_to_tensor = standard_transforms.ToTensor() restore_transform = standard_transforms.Compose([ DeNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), standard_transforms.ToPILImage() ]) # draw one by one for idx in range(samples.shape[0]): sample = restore_transform(samples[idx]) sample = pil_to_tensor(sample.convert('RGB')).numpy() * 255 sample_gt = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy() sample_pred = sample.transpose([1, 2, 0])[:, :, ::-1].astype(np.uint8).copy() max_len = np.max(sample_gt.shape) size = 2 # draw gt for t in gts[idx]: sample_gt = cv2.circle(sample_gt, (int(t[0]), int(t[1])), size, (0, 255, 0), -1) # draw predictions for p in pred[idx]: sample_pred = cv2.circle(sample_pred, (int(p[0]), int(p[1])), size, (0, 0, 255), -1) name = targets[idx]['image_id'] # save the visualized images if des is not None: cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_gt.jpg'.format(int(name), des, len(gts[idx]), len(pred[idx]))), sample_gt) cv2.imwrite(os.path.join(vis_dir, '{}_{}_gt_{}_pred_{}_pred.jpg'.format(int(name), des, len(gts[idx]), len(pred[idx]))), sample_pred) else: cv2.imwrite( os.path.join(vis_dir, '{}_gt_{}_pred_{}_gt.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))), sample_gt) cv2.imwrite( os.path.join(vis_dir, '{}_gt_{}_pred_{}_pred.jpg'.format(int(name), len(gts[idx]), len(pred[idx]))), sample_pred) # the training routine def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_norm: float = 0): model.train() criterion.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) # iterate all training samples for samples, targets in data_loader: samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] # forward outputs = model(samples) # calc the losses loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) # reduce all losses loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) # backward optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() # update logger metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} # the inference routine @torch.no_grad() def evaluate_crowd_no_overlap(model, data_loader, device, vis_dir=None): model.eval() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}')) # run inference on all images to calc MAE maes = [] mses = [] for samples, targets in data_loader: samples = samples.to(device) outputs = model(samples) outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0] outputs_points = outputs['pred_points'][0] gt_cnt = targets[0]['point'].shape[0] # 0.5 is used by default threshold = 0.5 points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist() predict_cnt = int((outputs_scores > threshold).sum()) # if specified, save the visualized images if vis_dir is not None: vis(samples, targets, [points], vis_dir) # accumulate MAE, MSE mae = abs(predict_cnt - gt_cnt) mse = (predict_cnt - gt_cnt) * (predict_cnt - gt_cnt) maes.append(float(mae)) mses.append(float(mse)) # calc MAE, MSE mae = np.mean(maes) mse = np.sqrt(np.mean(mses)) return mae, mse