Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load pretrained fraud detection model from Hugging Face
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
return pipeline("text-classification", model="juliensimon/xlm-roberta-base-finetuned-fraud-detection")
|
8 |
+
|
9 |
+
model = load_model()
|
10 |
+
|
11 |
+
# Streamlit UI
|
12 |
+
st.title("💳 Fraud Detection System (Hugging Face Model)")
|
13 |
+
|
14 |
+
# User input text
|
15 |
+
user_input = st.text_area("Enter transaction description:", "Payment of $500 for electronics purchase")
|
16 |
+
|
17 |
+
if st.button("Check for Fraud"):
|
18 |
+
prediction = model(user_input)
|
19 |
+
label = prediction[0]["label"]
|
20 |
+
score = prediction[0]["score"]
|
21 |
+
|
22 |
+
if label == "LABEL_1": # Assuming LABEL_1 means fraud
|
23 |
+
st.error(f"🚨 Fraudulent Transaction Detected! (Confidence: {score:.2f})")
|
24 |
+
else:
|
25 |
+
st.success(f"✅ Legitimate Transaction (Confidence: {score:.2f})")
|