Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +30 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "t5-small"
|
6 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
7 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Function to summarize text
|
10 |
+
def summarize_text(text, max_length=100):
|
11 |
+
input_text = "summarize: " + text
|
12 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
13 |
+
|
14 |
+
summary_ids = model.generate(inputs, max_length=max_length, min_length=30, length_penalty=2.0, num_beams=4)
|
15 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
16 |
+
|
17 |
+
return summary
|
18 |
+
|
19 |
+
# Gradio UI
|
20 |
+
iface = gr.Interface(
|
21 |
+
fn=summarize_text,
|
22 |
+
inputs=[gr.Textbox(label="Enter Text to Summarize"), gr.Slider(50, 200, step=10, label="Max Length")],
|
23 |
+
outputs="text",
|
24 |
+
title="Text Summarization App",
|
25 |
+
description="This app summarizes long texts using the T5 Transformer model.",
|
26 |
+
)
|
27 |
+
|
28 |
+
# Launch the app
|
29 |
+
if __name__ == "__main__":
|
30 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|