Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ BATCH_SIZE = 8
|
|
8 |
|
9 |
device = 0 if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
11 |
pipe = pipeline(
|
12 |
task="automatic-speech-recognition",
|
13 |
model=MODEL_NAME,
|
@@ -15,28 +16,20 @@ pipe = pipeline(
|
|
15 |
device=device,
|
16 |
)
|
17 |
|
18 |
-
|
19 |
-
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
20 |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
21 |
if seconds is not None:
|
22 |
milliseconds = round(seconds * 1000.0)
|
23 |
-
|
24 |
hours = milliseconds // 3_600_000
|
25 |
milliseconds -= hours * 3_600_000
|
26 |
-
|
27 |
minutes = milliseconds // 60_000
|
28 |
milliseconds -= minutes * 60_000
|
29 |
-
|
30 |
seconds = milliseconds // 1_000
|
31 |
milliseconds -= seconds * 1_000
|
32 |
-
|
33 |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
34 |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
35 |
else:
|
36 |
-
# we have a malformed timestamp so just return it as is
|
37 |
return seconds
|
38 |
|
39 |
-
|
40 |
def transcribe(file, task, return_timestamps):
|
41 |
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
|
42 |
text = outputs["text"]
|
@@ -49,53 +42,35 @@ def transcribe(file, task, return_timestamps):
|
|
49 |
text = "\n".join(str(feature) for feature in timestamps)
|
50 |
return text
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
)
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
title="Whisper Demo: Transcribe Audio",
|
85 |
-
description=(
|
86 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
87 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
88 |
-
" of arbitrary length."
|
89 |
-
),
|
90 |
-
examples=[
|
91 |
-
["./example.flac", "transcribe", False],
|
92 |
-
["./example.flac", "transcribe", True],
|
93 |
-
],
|
94 |
-
cache_examples=True,
|
95 |
-
allow_flagging="never",
|
96 |
-
)
|
97 |
-
|
98 |
-
with demo:
|
99 |
-
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"])
|
100 |
-
|
101 |
-
demo.launch(enable_queue=True)
|
|
|
8 |
|
9 |
device = 0 if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Initialize the pipeline
|
12 |
pipe = pipeline(
|
13 |
task="automatic-speech-recognition",
|
14 |
model=MODEL_NAME,
|
|
|
16 |
device=device,
|
17 |
)
|
18 |
|
|
|
|
|
19 |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
20 |
if seconds is not None:
|
21 |
milliseconds = round(seconds * 1000.0)
|
|
|
22 |
hours = milliseconds // 3_600_000
|
23 |
milliseconds -= hours * 3_600_000
|
|
|
24 |
minutes = milliseconds // 60_000
|
25 |
milliseconds -= minutes * 60_000
|
|
|
26 |
seconds = milliseconds // 1_000
|
27 |
milliseconds -= seconds * 1_000
|
|
|
28 |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
29 |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
30 |
else:
|
|
|
31 |
return seconds
|
32 |
|
|
|
33 |
def transcribe(file, task, return_timestamps):
|
34 |
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
|
35 |
text = outputs["text"]
|
|
|
42 |
text = "\n".join(str(feature) for feature in timestamps)
|
43 |
return text
|
44 |
|
45 |
+
# Use Blocks and modern Gradio components
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
|
48 |
+
with gr.TabbedInterface(["Transcribe Microphone", "Transcribe Audio File"]) as tabs:
|
49 |
+
|
50 |
+
with gr.TabItem("Transcribe Microphone"):
|
51 |
+
mic_audio = gr.Audio(source="microphone", type="filepath", label="Record Speech")
|
52 |
+
task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
53 |
+
return_timestamps = gr.Checkbox(label="Return timestamps")
|
54 |
+
mic_output = gr.Textbox(label="Transcription")
|
55 |
+
mic_button = gr.Button("Transcribe")
|
56 |
+
|
57 |
+
mic_button.click(
|
58 |
+
fn=transcribe,
|
59 |
+
inputs=[mic_audio, task, return_timestamps],
|
60 |
+
outputs=mic_output,
|
61 |
+
)
|
62 |
+
|
63 |
+
with gr.TabItem("Transcribe Audio File"):
|
64 |
+
file_audio = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
65 |
+
task = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
66 |
+
return_timestamps = gr.Checkbox(label="Return timestamps")
|
67 |
+
file_output = gr.Textbox(label="Transcription")
|
68 |
+
file_button = gr.Button("Transcribe")
|
69 |
+
|
70 |
+
file_button.click(
|
71 |
+
fn=transcribe,
|
72 |
+
inputs=[file_audio, task, return_timestamps],
|
73 |
+
outputs=file_output,
|
74 |
+
)
|
75 |
+
|
76 |
+
demo.launch(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|