File size: 9,511 Bytes
c7b88cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import random
from utils.text_generation import generate, get_rating
import networkx as nx

class Agent:
     
    """
    A class to represent an individual agent in a simulation similar to The Sims.

    Attributes:
    -----------
    name : str
        The name of the agent.
    description : str
        A brief description of the agent.
    location : str
        The current location of the agent in the simulated environment.
    memories : list
        A list of memories the agent has about their interactions.
    compressed_memories : list
        A list of compressed memories that summarize the agent's experiences.
    plans : str
        The agent's daily plans, generated at the beginning of each day.

    Methods:
    --------
    plan(global_time, town_people, prompt_meta):
        Generates the agent's daily plan.
    
    execute_action(other_agents, location, global_time, town_areas, prompt_meta):
        Executes the agent's action based on their current situation and interactions with other agents.
    
    update_memories(other_agents, global_time, action_results):
        Updates the agent's memories based on their interactions with other agents.
    
    compress_memories(memory_ratings, global_time, MEMORY_LIMIT=10):
        Compresses the agent's memories to a more manageable and relevant set.
    
    rate_locations(locations, town_areas, global_time, prompt_meta):
        Rates different locations in the simulated environment based on the agent's preferences and experiences.
    """
     
    def __init__(self, name, description, starting_location, world_graph, use_openai):
        self.name = name
        self.description = description
        self.location = starting_location
        self.memory_ratings = []
        self.memories = []
        self.compressed_memories = []
        self.plans = ""
        self.world_graph = world_graph
        self.use_openai = use_openai
        
    def __repr__(self):
        return f"Agent({self.name}, {self.description}, {self.location})"
    
    def plan(self, global_time, prompt_meta):
        """
        Generates the agent's daily plan.
        
        Parameters:
        -----------
        global_time : int
            The current time in the simulation.
        prompt_meta : str
            The prompt used to generate the plan.
        """

        prompt = "You are {}. The following is your description: {} You just woke up. What is your goal for today? Write it down in an hourly basis, starting at {}:00. Write only one or two very short sentences. Be very brief. Use at most 50 words.".format(self.name, self.description, str(global_time))
        self.plans = generate(prompt_meta.format(prompt), self.use_openai)
    
    def execute_action(self, other_agents, location, global_time, town_areas, prompt_meta):

        """Executes the agent's action based on their current situation and interactions with other agents.
        
        Parameters:
        -----------
        other_agents : list
            A list of other Agent objects in the simulation.
        location : Location
            The current Location object where the agent is located.
        global_time : int
            The current time in the simulation.
        town_areas : dict
            A dictionary of Location objects representing different areas in the simulated environment.
        prompt_meta : str
            The prompt used to generate the action.

        Returns:
        --------
        action : str
            The action executed by the agent.
        """

        people = [agent.name for agent in other_agents if agent.location == location]
        
        prompt = "You are {}. Your plans are: {}. You are currently in {} with the following description: {}. It is currently {}:00. The following people are in this area: {}. You can interact with them.".format(self.name, self.plans, location.name, town_areas[location.name], str(global_time), ', '.join(people))
        
        people_description = [f"{agent.name}: {agent.description}" for agent in other_agents if agent.location == location.name]
        prompt += ' You know the following about people: ' + '. '.join(people_description)
        
        prompt += "What do you do in the next hour? Use at most 10 words to explain."
        action = generate(prompt_meta.format(prompt), self.use_openai)
        return action
    
    def update_memories(self, other_agents, global_time, action_results):
        
        """
        Updates the agent's memories based on their interactions with other agents.
        
        Parameters:
        -----------
        other_agents : list
            A list of other Agent objects in the simulation.
        global_time : int
            The current time in the simulation.
        action_results : dict
            A dictionary of the results of each agent's action.
        """

        for agent in other_agents:
            if agent.location == self.location:
                self.memories.append('[Time: {}. Person: {}. Memory: {}]\n'.format(str(global_time), agent.name, action_results[agent.name]))

    def compress_memories(self, global_time, MEMORY_LIMIT=10):

        """
        Compresses the agent's memories to a more manageable and relevant set.
        
        Parameters:
        -----------
        global_time : int
            The current time in the simulation.
        MEMORY_LIMIT : int, optional
            The maximum number of memories to compress. Default is 10.

        Returns:
        --------
        memory_string : str
            The compressed memory string.
        """

        memories_sorted = sorted(self.memory_ratings, key=lambda x: x[1], reverse=True)
        relevant_memories = memories_sorted[:MEMORY_LIMIT]
        memory_string_to_compress = '.'.join([a[0] for a in relevant_memories])
        return '[Recollection at Time {}:00: {}]'.format(str(global_time), memory_string_to_compress)
    
    def rate_memories(self, locations, global_time, prompt_meta):

        """
         Rates the agent's memories based on their relevance and importance.
        
        Parameters:
        -----------
        locations : Locations
            The Locations object representing different areas in the simulated environment.
        global_time : int
            The current time in the simulation.
        prompt_meta : str
            The prompt used to rate the memories.

        Returns:
        --------
        memory_ratings : list
            A list of tuples representing the memory, its rating, and the generated response.
        """

        memory_ratings = []
        for memory in self.memories:
            prompt = "You are {}. Your plans are: {}. You are currently in {}. It is currently {}:00. You observe the following: {}. Give a rating, between 1 and 5, to how much you care about this.".format(self.name, self.plans, locations.get_location(self.location), str(global_time), memory)
            res = generate(prompt_meta.format(prompt), self.use_openai)
            rating = get_rating(res)
            max_attempts = 2
            current_attempt = 0
            while rating is None and current_attempt < max_attempts:
                rating = get_rating(res)
                current_attempt += 1
            if rating is None:
                rating = 0
            memory_ratings.append((memory, rating, res))
        self.memory_ratings = memory_ratings
        return memory_ratings


    def rate_locations(self, locations, global_time, prompt_meta):

        """
        Rates different locations in the simulated environment based on the agent's preferences and experiences.
        
        Parameters:
        -----------
        locations : Locations
            The Locations object representing different areas in the simulated environment.
        global_time : int
            The current time in the simulation.
        prompt_meta : str
            The prompt used to rate the locations.

        Returns:
        --------
        place_ratings : list
            A list of tuples representing the location, its rating, and the generated response.

        """

        place_ratings = []
        for location in locations.locations.values():
            prompt = "You are {}. Your plans are: {}. It is currently {}:00. You are currently at {}. How likely are you to go to {} next?".format(self.name, self.plans, str(global_time), locations.get_location(self.location), location.name)
            res = generate(prompt_meta.format(prompt), self.use_openai)
            rating = get_rating(res)
            max_attempts = 2
            current_attempt = 0
            while rating is None and current_attempt < max_attempts:
                rating = get_rating(res)
                current_attempt += 1
            if rating is None:
                rating = 0
            place_ratings.append((location.name, rating, res))
        self.place_ratings = place_ratings
        return sorted(place_ratings, key=lambda x: x[1], reverse=True)
    
    def move(self, new_location_name):

        if new_location_name == self.location:
            return self.location

        try:
            path = nx.shortest_path(self.world_graph, source=self.location, target=new_location_name)
            self.location = new_location_name
        except nx.NetworkXNoPath:
            print(f"No path found between {self.location} and {new_location_name}")
            return self.location

        return self.location