diff --git "a/generative-agents-main/notebook/WIP/demo_01_phandalin_simulation.ipynb" "b/generative-agents-main/notebook/WIP/demo_01_phandalin_simulation.ipynb" new file mode 100644--- /dev/null +++ "b/generative-agents-main/notebook/WIP/demo_01_phandalin_simulation.ipynb" @@ -0,0 +1,5046 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "machine_shape": "hm" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "gpuClass": "standard", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "a2c67dd603e54486972d8f2c401e93a6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5a465b0f45574a75b2b8a875d077c128", + "IPY_MODEL_0dcab04363604f75a6724fbd9a3307a0", + "IPY_MODEL_9c2fc530ef8b402f964907e82b2acd22" + ], + "layout": "IPY_MODEL_d0f36b4ddbef42dbbfc75db854fc7b0d" + } + }, + "5a465b0f45574a75b2b8a875d077c128": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8f53d93acade4cf0bbad6aabe6f4a5d6", + "placeholder": "​", + "style": "IPY_MODEL_18ff4b11558745caaf6fea69c81bfcb1", + "value": "Downloading (…)lve/main/config.json: 100%" + } + }, + "0dcab04363604f75a6724fbd9a3307a0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6c3d7a456fb34efaa217c8fa43b0fae8", + "max": 1527, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ebbaafb98f794911a625ad4ca6d3877b", + "value": 1527 + } + }, + "9c2fc530ef8b402f964907e82b2acd22": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_81d4e59a43174cbc981e47055660c3f5", + "placeholder": "​", + "style": "IPY_MODEL_3d1e4965629b4a808e4920a720f31841", + "value": " 1.53k/1.53k [00:00<00:00, 140kB/s]" + } + }, + "d0f36b4ddbef42dbbfc75db854fc7b0d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f53d93acade4cf0bbad6aabe6f4a5d6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "18ff4b11558745caaf6fea69c81bfcb1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c3d7a456fb34efaa217c8fa43b0fae8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ebbaafb98f794911a625ad4ca6d3877b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "81d4e59a43174cbc981e47055660c3f5": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d1e4965629b4a808e4920a720f31841": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9f8e845e29ae45d1b3793674fbea9713": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3754581af2dd4aeb88d5f58a4df64fae", + "IPY_MODEL_4b40dcd9d82b475dba391e46b3e0d490", + "IPY_MODEL_b2b90b850e5b4a4c9a8bb7407762dab1" + ], + "layout": "IPY_MODEL_59b3c00cc6b64fb4b1c5db877dc036a6" + } + }, + "3754581af2dd4aeb88d5f58a4df64fae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25c7697e191e4953aff138ea05502a8d", + "placeholder": "​", + "style": "IPY_MODEL_1beb1c41efd54e648765ca405fbe7152", + "value": "Downloading (…)model.bin.index.json: 100%" + } + }, + "4b40dcd9d82b475dba391e46b3e0d490": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0ae1acdcff1945dea5ce3b50c69ab883", + "max": 50781, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d361df3ef84f4293b4221d51380dce73", + "value": 50781 + } + }, + "b2b90b850e5b4a4c9a8bb7407762dab1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0fc12b7084084851bd50a980a3add39d", + "placeholder": "​", + "style": "IPY_MODEL_6d2f5b61f50c48509a909dcb119ffdcb", + "value": " 50.8k/50.8k [00:00<00:00, 238kB/s]" + } + }, + "59b3c00cc6b64fb4b1c5db877dc036a6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25c7697e191e4953aff138ea05502a8d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1beb1c41efd54e648765ca405fbe7152": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0ae1acdcff1945dea5ce3b50c69ab883": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d361df3ef84f4293b4221d51380dce73": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0fc12b7084084851bd50a980a3add39d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6d2f5b61f50c48509a909dcb119ffdcb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bbb32dc660c94c30b2498bdf93d1fce6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3bb3d2722bd248dfaa6accf2b1688e2a", + "IPY_MODEL_d5e90e6ec4404179b4b7e29b499867a7", + "IPY_MODEL_8528960b9f884c7588a779d4352870c5" + ], + "layout": "IPY_MODEL_3fbb83c2c312473680c5c60828c1d6ab" + } + }, + "3bb3d2722bd248dfaa6accf2b1688e2a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5f4119acd15f4fe693e9e5d7f4748a57", + "placeholder": "​", + "style": "IPY_MODEL_0eaad468839e490dab7ad85b656ffa78", + "value": "Downloading shards: 100%" + } + }, + "d5e90e6ec4404179b4b7e29b499867a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2f6ede4cb2b940e7af67e12b7587e767", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_781bb36d52e64cc184ed053eee01aaf2", + "value": 2 + } + }, + "8528960b9f884c7588a779d4352870c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8708a13ef51f4fa398d910b53cf15abc", + "placeholder": "​", + "style": "IPY_MODEL_7e1804ae8d044f45914bccb527c62201", + "value": " 2/2 [00:42<00:00, 18.31s/it]" + } + }, + "3fbb83c2c312473680c5c60828c1d6ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f4119acd15f4fe693e9e5d7f4748a57": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0eaad468839e490dab7ad85b656ffa78": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2f6ede4cb2b940e7af67e12b7587e767": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "781bb36d52e64cc184ed053eee01aaf2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8708a13ef51f4fa398d910b53cf15abc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7e1804ae8d044f45914bccb527c62201": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f29b2e08cbaa41e7a14920c0c55ee3d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94c53333829c4015b8d07c65afc2e180", + "IPY_MODEL_72d9e20a3e1d40ba86f55da478ec9fc0", + "IPY_MODEL_c7b4a4021d564beea19ada3b481cfa94" + ], + "layout": "IPY_MODEL_b087e3453fe54aba9b7ef9a5b9683094" + } + }, + "94c53333829c4015b8d07c65afc2e180": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_74c8430518014b5b8e8ee711c985fcb2", + "placeholder": "​", + "style": "IPY_MODEL_e1cbf77aead346e4975f6cd6196e94b0", + "value": "Downloading (…)l-00001-of-00002.bin: 100%" + } + }, + "72d9e20a3e1d40ba86f55da478ec9fc0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_83bd2fa3f7b54e4dbffea8a6fbd5a361", + "max": 9449727999, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dba973cf947945f79b4dfa765feacdf7", + "value": 9449727999 + } + }, + "c7b4a4021d564beea19ada3b481cfa94": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3e225ddc8f49478eba88ec2dba2d3bb8", + "placeholder": "​", + "style": "IPY_MODEL_799485b1e8d2481dbb490ec93b0eebe8", + "value": " 9.45G/9.45G [00:36<00:00, 363MB/s]" + } + }, + "b087e3453fe54aba9b7ef9a5b9683094": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74c8430518014b5b8e8ee711c985fcb2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e1cbf77aead346e4975f6cd6196e94b0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "83bd2fa3f7b54e4dbffea8a6fbd5a361": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dba973cf947945f79b4dfa765feacdf7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3e225ddc8f49478eba88ec2dba2d3bb8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "799485b1e8d2481dbb490ec93b0eebe8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "459037784b064614b624cbc3dc0903ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b49295c52c8049b4b7d71354c466106c", + "IPY_MODEL_3a98cb61c32a407183fc7eecc6de2d5d", + "IPY_MODEL_8f0f1240aa88484e81a0705d03e64d68" + ], + "layout": "IPY_MODEL_ab8e5c68f7154c49b274c2592af746c2" + } + }, + "b49295c52c8049b4b7d71354c466106c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_71ec5f4457fb46f79d3d539ad8c2d5c3", + "placeholder": "​", + "style": "IPY_MODEL_48c3144b839c4ccc9680ad8246c14df8", + "value": "Downloading (…)l-00002-of-00002.bin: 100%" + } + }, + "3a98cb61c32a407183fc7eecc6de2d5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ada1699c3d04dc495ee1976f99ad03b", + "max": 1949497635, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_a7c2e3a876b848e1a58829837c64eea6", + "value": 1949497635 + } + }, + "8f0f1240aa88484e81a0705d03e64d68": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6823be8810844498fd1e87743762034", + "placeholder": "​", + "style": "IPY_MODEL_6548b145493d463c82c462dcb64a721c", + "value": " 1.95G/1.95G [00:04<00:00, 333MB/s]" + } + }, + "ab8e5c68f7154c49b274c2592af746c2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71ec5f4457fb46f79d3d539ad8c2d5c3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "48c3144b839c4ccc9680ad8246c14df8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6ada1699c3d04dc495ee1976f99ad03b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a7c2e3a876b848e1a58829837c64eea6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e6823be8810844498fd1e87743762034": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6548b145493d463c82c462dcb64a721c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a7c7f90cd46b4ad9a5aaa94396f5913c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c3ebca2ffc2a43bdaa0cb5a57ad9ab3b", + "IPY_MODEL_c000cb90a8cb41908e9d9537f2024e1b", + "IPY_MODEL_3cdecd90237c4bfbb10538da5018e04b" + ], + "layout": "IPY_MODEL_ba77a4a36a134ab3a25b470296959629" + } + }, + "c3ebca2ffc2a43bdaa0cb5a57ad9ab3b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bb360bcfca8745109abef5255356e1a8", + "placeholder": "​", + "style": "IPY_MODEL_41410d3d34ad42ec9231b775ae2f96ec", + "value": "Loading checkpoint shards: 100%" + } + }, + "c000cb90a8cb41908e9d9537f2024e1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f4032b95cf9741c79ebbcafbd9f43547", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b771b7193bf413da9fd6cc9e270fd47", + "value": 2 + } + }, + "3cdecd90237c4bfbb10538da5018e04b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9d189de514174cacb31142f92f54907a", + "placeholder": "​", + "style": "IPY_MODEL_e78702caa14145ed8f06cf59d629afc7", + "value": " 2/2 [00:07<00:00, 3.43s/it]" + } + }, + "ba77a4a36a134ab3a25b470296959629": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bb360bcfca8745109abef5255356e1a8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "41410d3d34ad42ec9231b775ae2f96ec": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f4032b95cf9741c79ebbcafbd9f43547": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5b771b7193bf413da9fd6cc9e270fd47": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9d189de514174cacb31142f92f54907a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e78702caa14145ed8f06cf59d629afc7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4bf25ce201a246f9b7a2249e20a6ecd0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bfb418c70b264dd083d8b2def1547148", + "IPY_MODEL_ef7f60b9f7124bbe94710a1618902e85", + "IPY_MODEL_e4ae43c560f5415698d7f26fee076f50" + ], + "layout": "IPY_MODEL_da75704b128a4858baa1de307884f9d3" + } + }, + "bfb418c70b264dd083d8b2def1547148": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_79232756450c49b697fb22265ac0f462", + "placeholder": "​", + "style": "IPY_MODEL_c7431f426eea4657be7e29fb52155e35", + "value": "Downloading (…)neration_config.json: 100%" + } + }, + "ef7f60b9f7124bbe94710a1618902e85": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e554858f475e46109c47dc76f4f9e22a", + "max": 142, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_749e972ddd054935842dcee6281e0115", + "value": 142 + } + }, + "e4ae43c560f5415698d7f26fee076f50": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c66c467452fc44e0969d1e499c588f61", + "placeholder": "​", + "style": "IPY_MODEL_3d9d2aaa1bf14df09abe7b98c51dd383", + "value": " 142/142 [00:00<00:00, 12.2kB/s]" + } + }, + "da75704b128a4858baa1de307884f9d3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "79232756450c49b697fb22265ac0f462": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c7431f426eea4657be7e29fb52155e35": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e554858f475e46109c47dc76f4f9e22a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "749e972ddd054935842dcee6281e0115": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c66c467452fc44e0969d1e499c588f61": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d9d2aaa1bf14df09abe7b98c51dd383": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "aa2f240f68074efebd2d7c3cd27f8b5d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_513dca1bc39143a1b6ee64d5425fbfa8", + "IPY_MODEL_98f5e82165db4b1bb0589b88978ef2f1", + "IPY_MODEL_b3a8cca673b742fc90903f0b65b46c67" + ], + "layout": "IPY_MODEL_8e8f19179eb840108de7f7638461cb21" + } + }, + "513dca1bc39143a1b6ee64d5425fbfa8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5225d232c9d541d6884b24ead6941922", + "placeholder": "​", + "style": "IPY_MODEL_c12141e6229149708153dd143f1241c9", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "98f5e82165db4b1bb0589b88978ef2f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_94de9091bdb045518652b698b7e41c05", + "max": 2349, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7bb30d5bd08b4985866a26267c44509b", + "value": 2349 + } + }, + "b3a8cca673b742fc90903f0b65b46c67": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_321290263028429f997cfa0d9d6a4a88", + "placeholder": "​", + "style": "IPY_MODEL_76297355ee8445e38f7dbeb27092ca96", + "value": " 2.35k/2.35k [00:00<00:00, 204kB/s]" + } + }, + "8e8f19179eb840108de7f7638461cb21": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5225d232c9d541d6884b24ead6941922": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c12141e6229149708153dd143f1241c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94de9091bdb045518652b698b7e41c05": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7bb30d5bd08b4985866a26267c44509b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "321290263028429f997cfa0d9d6a4a88": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "76297355ee8445e38f7dbeb27092ca96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46c494c1d71b41f7b972205a0d054824": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e65b846d11264ed0aa24954c4a565ab5", + "IPY_MODEL_652045aea8304e549ec0e49deceef353", + "IPY_MODEL_0492e1e5523345a5b35bca9fb01ada51" + ], + "layout": "IPY_MODEL_0827939277d2443687235bb71f1725a4" + } + }, + "e65b846d11264ed0aa24954c4a565ab5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cdb8afb5d8b741289c7450b3782b66b0", + "placeholder": "​", + "style": "IPY_MODEL_c6e19d8894c14ef5ae962fe4ce0d7108", + "value": "Downloading spiece.model: 100%" + } + }, + "652045aea8304e549ec0e49deceef353": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c37e626ab16348dba07c17c3e30c81ee", + "max": 791656, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dfae0fc6bf3d464ebaa6c84d5a45e507", + "value": 791656 + } + }, + "0492e1e5523345a5b35bca9fb01ada51": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2fa939554d664800aae8b674ce9ac386", + "placeholder": "​", + "style": "IPY_MODEL_22e1cfe2cff9472d89449e32b6416d56", + "value": " 792k/792k [00:00<00:00, 57.5MB/s]" + } + }, + "0827939277d2443687235bb71f1725a4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cdb8afb5d8b741289c7450b3782b66b0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6e19d8894c14ef5ae962fe4ce0d7108": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c37e626ab16348dba07c17c3e30c81ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dfae0fc6bf3d464ebaa6c84d5a45e507": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2fa939554d664800aae8b674ce9ac386": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "22e1cfe2cff9472d89449e32b6416d56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f65b04b1b9eb4aed8529629c76503f1c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f012807b0bb247a68d387790391db6e8", + "IPY_MODEL_bbc6d54af5234ce0a129549ac5ab919a", + "IPY_MODEL_cd755ae88e814508b816579888f062e6" + ], + "layout": "IPY_MODEL_af7542fd87da4bbfa5581078af3313d3" + } + }, + "f012807b0bb247a68d387790391db6e8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d134ef8f573548b59cf0954e98e58ac8", + "placeholder": "​", + "style": "IPY_MODEL_839c01d50f7a45878087f74bcf717a73", + "value": "Downloading (…)/main/tokenizer.json: 100%" + } + }, + "bbc6d54af5234ce0a129549ac5ab919a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_91b4eca587284c68afbbb050607e9062", + "max": 2422164, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_40c11862efe94884af4a1f8e016a3dd6", + "value": 2422164 + } + }, + "cd755ae88e814508b816579888f062e6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8d4bebefc9c942f2954fe2e921ae384f", + "placeholder": "​", + "style": "IPY_MODEL_dca6c27b6f564a0590b53942e88fcd2d", + "value": " 2.42M/2.42M [00:00<00:00, 2.84MB/s]" + } + }, + "af7542fd87da4bbfa5581078af3313d3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d134ef8f573548b59cf0954e98e58ac8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "839c01d50f7a45878087f74bcf717a73": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91b4eca587284c68afbbb050607e9062": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "40c11862efe94884af4a1f8e016a3dd6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8d4bebefc9c942f2954fe2e921ae384f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dca6c27b6f564a0590b53942e88fcd2d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "86306e2781dc43c3a5578d8126d0fef8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_32f8fc9dd7bd4542b4e4b8483220f45b", + "IPY_MODEL_8810b40155e24fd8a3dd564513b1a702", + "IPY_MODEL_0b4d38047d684906ba147c1a5eeee250" + ], + "layout": "IPY_MODEL_7682db6a986348e7849f31d64839cc02" + } + }, + "32f8fc9dd7bd4542b4e4b8483220f45b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a59ad109591485a84fe367c03d63c0a", + "placeholder": "​", + "style": "IPY_MODEL_4983503ddad54785bd94086171b579eb", + "value": "Downloading (…)cial_tokens_map.json: 100%" + } + }, + "8810b40155e24fd8a3dd564513b1a702": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b168d420028c4b19b33ab82696f7bee1", + "max": 2201, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_363de85d1d9e4580979196d8a405c408", + "value": 2201 + } + }, + "0b4d38047d684906ba147c1a5eeee250": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e95897fcb2184ea2a7e476c20c9feb2e", + "placeholder": "​", + "style": "IPY_MODEL_d5083db8ca924415be5dd474a977f512", + "value": " 2.20k/2.20k [00:00<00:00, 172kB/s]" + } + }, + "7682db6a986348e7849f31d64839cc02": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a59ad109591485a84fe367c03d63c0a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4983503ddad54785bd94086171b579eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b168d420028c4b19b33ab82696f7bee1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "363de85d1d9e4580979196d8a405c408": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e95897fcb2184ea2a7e476c20c9feb2e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d5083db8ca924415be5dd474a977f512": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Installation\n", + "\n", + "We will need to install a number of libraries to start with." + ], + "metadata": { + "id": "GrLWLle74-mC" + } + }, + { + "cell_type": "code", + "source": [ + "import networkx as nx\n", + "!pip install transformers\n", + "!pip install sentencepiece" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2IVQbA_GeDqN", + "outputId": "9353296b-50fe-4f1a-fca0-ab0e2a649a7d" + }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting transformers\n", + " Downloading transformers-4.28.1-py3-none-any.whl (7.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.0/7.0 MB\u001b[0m \u001b[31m79.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (1.22.4)\n", + "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n", + " Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m52.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting huggingface-hub<1.0,>=0.11.0\n", + " Downloading huggingface_hub-0.14.1-py3-none-any.whl (224 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m224.5/224.5 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.10/dist-packages (from transformers) (4.65.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from transformers) (2.27.1)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers) (3.12.0)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers) (23.1)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from transformers) (6.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers) (2022.10.31)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (2023.4.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.5.0)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (3.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2022.12.7)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (1.26.15)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->transformers) (2.0.12)\n", + "Installing collected packages: tokenizers, huggingface-hub, transformers\n", + "Successfully installed huggingface-hub-0.14.1 tokenizers-0.13.3 transformers-4.28.1\n", + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting sentencepiece\n", + " Downloading sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m59.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: sentencepiece\n", + "Successfully installed sentencepiece-0.1.99\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "from pathlib import Path\n", + "from google.colab import drive\n", + "\n", + "drive.mount('/content/drive/')\n", + "import os\n", + "if not os.path.exists(\"/content/drive/MyDrive/generative-agents-data/\"):\n", + " os.makedirs(\"/content/drive/MyDrive/generative-agents-data/\")\n", + "os.chdir(\"/content/drive/MyDrive/generative-agents-data/\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TtiNGNIByT-Q", + "outputId": "8634165e-ee73-4c31-a8a0-880ab8e628b3" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Drive already mounted at /content/drive/; to attempt to forcibly remount, call drive.mount(\"/content/drive/\", force_remount=True).\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We use flan alpaca model for speed and local execution." + ], + "metadata": { + "id": "ppJQOfF-3HT1" + } + }, + { + "cell_type": "code", + "source": [ + "from transformers import pipeline\n", + "low_memory = False\n", + "prompt = \"Write an email about an alpaca that likes flan\" # Check if the model works\n", + "if low_memory:\n", + " model = pipeline(model=\"declare-lab/flan-alpaca-xl\", device=0)\n", + "else:\n", + " model = pipeline(model=\"declare-lab/flan-alpaca-gpt4-xl\", device=0)\n", + "model(prompt, max_length=128, do_sample=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 424, + "referenced_widgets": [ + "a2c67dd603e54486972d8f2c401e93a6", + "5a465b0f45574a75b2b8a875d077c128", + "0dcab04363604f75a6724fbd9a3307a0", + "9c2fc530ef8b402f964907e82b2acd22", + "d0f36b4ddbef42dbbfc75db854fc7b0d", + "8f53d93acade4cf0bbad6aabe6f4a5d6", + "18ff4b11558745caaf6fea69c81bfcb1", + "6c3d7a456fb34efaa217c8fa43b0fae8", + "ebbaafb98f794911a625ad4ca6d3877b", + "81d4e59a43174cbc981e47055660c3f5", + "3d1e4965629b4a808e4920a720f31841", + "9f8e845e29ae45d1b3793674fbea9713", + "3754581af2dd4aeb88d5f58a4df64fae", + "4b40dcd9d82b475dba391e46b3e0d490", + "b2b90b850e5b4a4c9a8bb7407762dab1", + "59b3c00cc6b64fb4b1c5db877dc036a6", + "25c7697e191e4953aff138ea05502a8d", + "1beb1c41efd54e648765ca405fbe7152", + "0ae1acdcff1945dea5ce3b50c69ab883", + "d361df3ef84f4293b4221d51380dce73", + "0fc12b7084084851bd50a980a3add39d", + "6d2f5b61f50c48509a909dcb119ffdcb", + "bbb32dc660c94c30b2498bdf93d1fce6", + "3bb3d2722bd248dfaa6accf2b1688e2a", + "d5e90e6ec4404179b4b7e29b499867a7", + "8528960b9f884c7588a779d4352870c5", + "3fbb83c2c312473680c5c60828c1d6ab", + "5f4119acd15f4fe693e9e5d7f4748a57", + "0eaad468839e490dab7ad85b656ffa78", + "2f6ede4cb2b940e7af67e12b7587e767", + "781bb36d52e64cc184ed053eee01aaf2", + "8708a13ef51f4fa398d910b53cf15abc", + "7e1804ae8d044f45914bccb527c62201", + "f29b2e08cbaa41e7a14920c0c55ee3d8", + "94c53333829c4015b8d07c65afc2e180", + "72d9e20a3e1d40ba86f55da478ec9fc0", + "c7b4a4021d564beea19ada3b481cfa94", + "b087e3453fe54aba9b7ef9a5b9683094", + "74c8430518014b5b8e8ee711c985fcb2", + "e1cbf77aead346e4975f6cd6196e94b0", + "83bd2fa3f7b54e4dbffea8a6fbd5a361", + "dba973cf947945f79b4dfa765feacdf7", + "3e225ddc8f49478eba88ec2dba2d3bb8", + "799485b1e8d2481dbb490ec93b0eebe8", + "459037784b064614b624cbc3dc0903ef", + "b49295c52c8049b4b7d71354c466106c", + "3a98cb61c32a407183fc7eecc6de2d5d", + "8f0f1240aa88484e81a0705d03e64d68", + "ab8e5c68f7154c49b274c2592af746c2", + "71ec5f4457fb46f79d3d539ad8c2d5c3", + "48c3144b839c4ccc9680ad8246c14df8", + "6ada1699c3d04dc495ee1976f99ad03b", + "a7c2e3a876b848e1a58829837c64eea6", + "e6823be8810844498fd1e87743762034", + "6548b145493d463c82c462dcb64a721c", + "a7c7f90cd46b4ad9a5aaa94396f5913c", + "c3ebca2ffc2a43bdaa0cb5a57ad9ab3b", + "c000cb90a8cb41908e9d9537f2024e1b", + "3cdecd90237c4bfbb10538da5018e04b", + "ba77a4a36a134ab3a25b470296959629", + "bb360bcfca8745109abef5255356e1a8", + "41410d3d34ad42ec9231b775ae2f96ec", + "f4032b95cf9741c79ebbcafbd9f43547", + "5b771b7193bf413da9fd6cc9e270fd47", + "9d189de514174cacb31142f92f54907a", + "e78702caa14145ed8f06cf59d629afc7", + "4bf25ce201a246f9b7a2249e20a6ecd0", + "bfb418c70b264dd083d8b2def1547148", + "ef7f60b9f7124bbe94710a1618902e85", + "e4ae43c560f5415698d7f26fee076f50", + "da75704b128a4858baa1de307884f9d3", + "79232756450c49b697fb22265ac0f462", + "c7431f426eea4657be7e29fb52155e35", + "e554858f475e46109c47dc76f4f9e22a", + "749e972ddd054935842dcee6281e0115", + "c66c467452fc44e0969d1e499c588f61", + "3d9d2aaa1bf14df09abe7b98c51dd383", + "aa2f240f68074efebd2d7c3cd27f8b5d", + "513dca1bc39143a1b6ee64d5425fbfa8", + "98f5e82165db4b1bb0589b88978ef2f1", + "b3a8cca673b742fc90903f0b65b46c67", + "8e8f19179eb840108de7f7638461cb21", + "5225d232c9d541d6884b24ead6941922", + "c12141e6229149708153dd143f1241c9", + "94de9091bdb045518652b698b7e41c05", + "7bb30d5bd08b4985866a26267c44509b", + "321290263028429f997cfa0d9d6a4a88", + "76297355ee8445e38f7dbeb27092ca96", + "46c494c1d71b41f7b972205a0d054824", + "e65b846d11264ed0aa24954c4a565ab5", + "652045aea8304e549ec0e49deceef353", + "0492e1e5523345a5b35bca9fb01ada51", + "0827939277d2443687235bb71f1725a4", + "cdb8afb5d8b741289c7450b3782b66b0", + "c6e19d8894c14ef5ae962fe4ce0d7108", + "c37e626ab16348dba07c17c3e30c81ee", + "dfae0fc6bf3d464ebaa6c84d5a45e507", + "2fa939554d664800aae8b674ce9ac386", + "22e1cfe2cff9472d89449e32b6416d56", + "f65b04b1b9eb4aed8529629c76503f1c", + "f012807b0bb247a68d387790391db6e8", + "bbc6d54af5234ce0a129549ac5ab919a", + "cd755ae88e814508b816579888f062e6", + "af7542fd87da4bbfa5581078af3313d3", + "d134ef8f573548b59cf0954e98e58ac8", + "839c01d50f7a45878087f74bcf717a73", + "91b4eca587284c68afbbb050607e9062", + "40c11862efe94884af4a1f8e016a3dd6", + "8d4bebefc9c942f2954fe2e921ae384f", + "dca6c27b6f564a0590b53942e88fcd2d", + "86306e2781dc43c3a5578d8126d0fef8", + "32f8fc9dd7bd4542b4e4b8483220f45b", + "8810b40155e24fd8a3dd564513b1a702", + "0b4d38047d684906ba147c1a5eeee250", + "7682db6a986348e7849f31d64839cc02", + "4a59ad109591485a84fe367c03d63c0a", + "4983503ddad54785bd94086171b579eb", + "b168d420028c4b19b33ab82696f7bee1", + "363de85d1d9e4580979196d8a405c408", + "e95897fcb2184ea2a7e476c20c9feb2e", + "d5083db8ca924415be5dd474a977f512" + ] + }, + "id": "_5tljpoz0PNA", + "outputId": "9d5783f8-3bf0-433d-c8f2-7e3591fdd962" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading (…)lve/main/config.json: 0%| | 0.00/1.53k [00:000:\n", + " return min(nums)\n", + " else:\n", + " return None" + ], + "metadata": { + "id": "rP2-skKnZ5f-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "interaction_ratings = {}\n", + "for name in town_people.keys():\n", + " interaction_ratings[name] = {}" + ], + "metadata": { + "id": "Tol_sUUCd7yJ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "action_prompts = {}\n", + "for location in town_areas.keys():\n", + " people = []\n", + " for i in town_people.keys():\n", + " if locations[i] == location:\n", + " people.append(i)\n", + " \n", + " for name in people:\n", + " for target_name in people:\n", + " if target_name is not name:\n", + " prompt = \"You are {}. {} You are planning to: {}. You are currently in {} with the following description: {}. It is currently {}:00. The following people are in this area: {}. Specifically, {}: {}. Give a rating, between 1 and 5, to how much you would like to interact with {} over the next hour.\".format(name, town_people[name], plans[name], location, town_areas[location], str(global_time), ', '.join(people), target_name, town_people[target_name], target_name)\n", + " res = generate(prompt_meta.format(prompt))\n", + " rating = get_rating(res)\n", + " max_attempts = 5\n", + " current_attempt = 0\n", + " while rating is None and current_attempt 512). Running this sequence through the model will result in indexing errors\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Toblen Stonehill I went to the bookstall near Town Square to buy a new book.\n", + "Daran Edermath I explored the town. Observed the people. Take notes.\n", + "Linene Graywind Linnet had to remain alert and be prepared for any potential interactions with the ruffians in the next hour.\n", + "Halia Thornton I wanted to have a chat. I was free any time after 8pm.\n", + "Qelline Alderleaf I have been eating Toblen, Sister Garaele, Harbin, Halia, Terrill, and Conrad.\n", + "Sister Garaele I investigated the town square, identified criminals, snooped for evidence, and took pictures for the Harpers.\n", + "Harbin Wester Unveiled new cafe, investigated noises. Greeted townsfolk, helped find new customers.\n", + "Terrill Bloodscar I entered the nearby forest and set up camp with the Redbrand ruffians. I stole their loot and waited for them to stumble into the square. I then joined them in their assault on the town, declaring my mission accomplished.\n", + "Conrad Scarface I took a look around town and saw who else was around.\n", + "Nellie Starsmith I killed a Redbrand hostage. I went to the Barons mansion. I killed a Redbrand guard. I made it out of Phandalin alive.\n", + "Valerie Grinblade I engage in various mischief to amuse my gang of ruffians and terrorize the adventurers of Phandalin.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Collect the memories people observe." + ], + "metadata": { + "id": "rLYWQcuDxfks" + } + }, + { + "cell_type": "code", + "source": [ + "action_prompts = {}\n", + "for location in town_areas.keys():\n", + " people = []\n", + " for i in town_people.keys():\n", + " if locations[i] == location:\n", + " people.append(i)\n", + " \n", + " for name in people:\n", + " for name_two in people:\n", + " memories[name].append('[Time: {}. Person: {}. Memory: {}]\\n'.format(str(global_time), name_two, action_results[name_two]))" + ], + "metadata": { + "id": "qL0YTTv_3znD" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# Rank Memories" + ], + "metadata": { + "id": "MmLy4OYssH32" + } + }, + { + "cell_type": "code", + "source": [ + "import re\n", + "def get_rating(x):\n", + " nums = [int(i) for i in re.findall(r'\\d+', x)]\n", + " if len(nums)>0:\n", + " return min(nums)\n", + " else:\n", + " return None" + ], + "metadata": { + "id": "jaUW3jeqsHV-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "memory_ratings = {}\n", + "for name in town_people.keys():\n", + " memory_ratings[name] = []\n", + " for i, memory in enumerate(memories[name]):\n", + " prompt = \"You are {}. Your plans are: {}. You are currently in {}. It is currently {}:00. You observe the following: {}. Give a rating, between 1 and 5, to how much you care about this.\".format(name, plans[name], locations[name], str(global_time), memory)\n", + " res = generate(prompt_meta.format(prompt))\n", + " rating = get_rating(res)\n", + " max_attempts = 2\n", + " current_attempt = 0\n", + " while rating is None and current_attempt', 4), (\"3 because I don't care. I'm just looking for some entertainment and I am so new to Phandalin that I can't really care.\", 3)]\n", + "[(\"3 (Little) care. However, it might be useful to check in on Toblen just to be sure he's still in Phandalin Town Square and what else around the area is happening.\", 3), (\"4 (Only a small portion of Linene's current thoughts are connected to this)\", 4), ('5. Linene cares greatly about the safety of the trading post and the Phandalin people. She has taken the necessary steps to ensure this.', 5), ('2 because it is not immediately relevant to my job.', 2), ('3/5 I care about this quite a bit since I want to improve my customer acquisition rate at the trading post.', 3), ('3/5. Sister Garaele deserves credit for her excellent investigation, snooping, and taking photos and videos for the Harpers. She deserves to be commended for her bravery.', 3), (\"Linene cares highly about this, as it's important to her progress towards her goal.\", 0), (\"2/5. Although I know it is reminiscent of a past crime, I have no interest in taking part in it to further my goals. I'm more interested in making new connections and developing opportunities with clients.\", 2), (\"3 out of 5 stars. Linene is probably not as concerned about the person as she is the goal she is trying to accomplish. She could give it a 1 out of 5, but it's not really relevant to her goal. She is much more focused on the goal she has set for today in Phandalin Town Square, which is to increase retail sales at the trading post.\", 1), ('I care about this, but only minimally.', 0), ('I rate this observation a 1 out of 5.', 1)]\n", + "[('I care about this a lot! I would really like to see how Toblen and other players handle it after the game.', 0), ('2 out of 5 stars. I enjoy exploring the town and visiting new places, and I want to talk to the people, so this rating means a lot.', 2), ('3/5. This suggests that I should care about that situation.', 3), ('4 (Adequate)! My intention is to start a conversation at 8pm. I value the time and energy that I gave to this task. Please let me know if you are interested in engaging in this discussion.', 4), ('5 I care about this, since it informs me of the progress made by the other players.', 5), ('4 I care very much about this, it is an important part of my journey. I look forward to discussing it with Sister Garaele in the coming days.', 4), (\"2/5. Although I don't care very much about the other players, I appreciate Harbin's work, and am proud to have met him. It also shows that I should strive to be good neighbours and help out when needed.\", 2), (\"3/5. I care a lot about the story they shared and I'm rooting for them to be successful in their mission.\", 3), ('3/5 I care about this. It could help me start a conversation with other players.', 3), (\"4 This task is important, since it helps to understand the ins and outs of the player's game. It may help to pick on one other player, or to talk to a friend to get a better understanding of what's going on in town. Good luck!\", 4), (\"3/5. I care about Valerie Grinblade's actions as it shows the level of player control and self-interest. She was acting reckless and out of control and it highlights how the game should be approached.\", 3)]\n", + "[('3 out of 5 stars. While I am not actively looking for information or people to observe, I do care about the people in my environment and am observant. This situation illustrates that I care about my surroundings and am interested in learning more about Phandalin Town Square.', 3), ('5 - I care deeply about learning more about the town and its inhabitants.', 5), (\"3/5. I care about the details of Linnet's situation and what it meant for her to be prepared.\", 3), (\"2 because I don't care about it that much.\", 2), ('3 (Because it has nothing to do with learning more about the town and its inhabitants).', 3), ('4 out of 5. My goal is to learn more about the town and its inhabitants, so I care greatly about this, and I am eager to see what the morning has in store.', 4), ('5 (important) because it helps me learn more about the town and its people.', 5), (\"3 (Not Very Concerned) - I have a goal of learning more about the town and its inhabitants, and while I'm not necessarily concerned about the individual involved, I'm still curious to find out what else Qelline has to say.\", 3), ('3/5 I care about this, as it will help me learn more about the town and its inhabitants.', 3), ('3 out of 5 stars. I am interested in learning more about the story behind Nellie Starsmith and her family.', 3), ('2/5. I care about this as it illustrates the way Valerie Grinblade acts, so I rate it highly.', 2)]\n", + "[(\"I care about this highly. It is important to make sure the Harper administration does not take advantage of Phandalin's citizens. I will immediately review the situation and do my best to uncover evidence.\", 0), (\"5 (mostly): Sister Garaele is engaged in collecting evidence of Harper's activities in Phandalin.\", 5), (\"2 (Minimum) Because I have already collected evidence from Linnet's home by 8:00 and I'm looking for the exact same scene at 8:00, so I do not care as much about it.\", 0), (\"4/5. I care deeply about making sure Harper's activities are not known to the wider community in Phandalin.\", 4), ('3/5 stars. This helps me out a lot.', 3), ('3/5. This has been a tedious task that I have been struggling with, so I could use less energy and focus on other tasks. However, it is essential that I continue to search for evidence to further my goal and ensure the safety of those in Phandalin. In order to achieve this, I need to be efficient with my resources, so I have adapted the mission to be shorter and more efficient. I am also looking at ways to leverage my network and gain access to more information. I see that the environment is becoming more and more dangerous and that I am needed to collect evidence for the Harpers. Lastly, I need to make connections with members of the town to better gain access to their resources. By the end of the mission,', 3), ('3/5. You are taking care of the evidence you need to complete your goal.', 3), (\"3/5. Seeing this confirms my suspicions that Terrill is hiding evidence of Harper's actions in Phandalin. The fact that he had the time, resources, and courage to attack the town square at such an early hour is more than enough for me to trust him. I'll be back in Phandalin to look for evidence and see if I can bring this person to justice.\", 3), ('4 (Much more important than other tasks).', 4), ('3/5 stars. I have been gathering evidence of Harper’s activities in Phandalin and I have noticed Nellie Starsmith as they stand in the guise of saving it from destruction; I am intrigued by what she is doing.', 3), ('3/5 stars. Since this information is important to my mission, I will use it to further my investigation.', 3)]\n", + "[('3/5. The townsfolk should know that Harbin is present in the square and will be able to provide assistance if needed. As far as the cafe opening, there is likely going to be some confusion between new customers and existing customers. Therefore, Harbin should ensure that the cafe is prepared for the expected crowd. He should also investigate the strange noises from the town square to determine the cause. Harbin is definitely making progress towards his goal of increasing the number of customers.', 3), ('3 (Not very important) - Harbin is not aware of any potential threats and is focused on accomplishing his mission.', 3), ('4; I care very much about Linnet.', 4), ('3/5. I am not interested in this yet.', 3), (\"3/5. I care about the information provided, but I didn't understand why it is important.\", 3), ('3/5. Harbin cares greatly about investigating the mysterious noises emanating from the town square. He is eager to learn more about the criminals who are at large, and to share his discoveries with the townspeople. With a clear plan of action, he can start the day off on the right foot and increase his chances of success.', 3), ('5 (Top Priority) nooutput>', 5), (\"3/5 stars. I'm aware of the fact that Terrill's memory isn't the best, but he should have a hint as to why, or he could have used the opportunity to gain more attention.\", 3), (\"1 (Don't care) #Acknowledgement #Planning #Recording\", 1), ('3 (Not important) since your other goal is to greet the townsfolk and announce the opening of the new cafe within the next few hours.', 3), (\"3/5, because Harbin does not have time to concern himself with the current situation. He'll be able to concentrate on the tasks at hand.\", 3)]\n", + "[('3 (Not important) and will continue on with my plans.', 3), ('3/5 because I care very little about this.', 3), (\"I care about this quite a bit - I understand how critical it is for Linene to be prepared for any potential interactions with the ruffians, and I'm sure they appreciate my interest.\", 0), (\"3 out of 5, as this won't have any effect on my plan.\", 3), (\"3/10. I have no interest in Qelline's memory, so I rate it unimportant. Your goal of the day should be to kill and rob adventurers. I will not have much time for this!\", 3), (\"5 (Caring) - Sister Garaele's work for the Harpers is a commendable effort and she should be commended for her dedication to her work.\", 5), ('3 out of 5 because it is irrelevant to my plan for today. I care more about the killing and robbery in the forest.', 3), (\"3/5. Terrill's memory is incredibly detailed, and it gives a clear insight into what motivated him to kill and rob adventurers. It makes it easier for you compare his performance to the objective of the day and to gauge his willingness to keep going.\", 3), ('4 (Not necessary) I am not concerned by this as it is not relevant to my current goal.', 4), ('5 (I care a lot about this)', 5), (\"3 (Don't care) as I simply want to make my mission in the nearby forest a success and make my time in Phandalin go by as fast as possible.\", 3)]\n", + "[('4 The fact that I can purchase a new book is of great importance to me.', 4), ('5: I care about this a lot.', 5), (\"3/5 because I care about how Linnet is feeling because it's important for her to be aware of potential dangers. However, I am also looking for information, so I can use this information to further my own investigation.\", 3), ('4 out of 5, because I care about this.', 4), ('2 (too little care) #Conrad Scarface', 2), ('4. You care deeply about helping the people of Phandalin and investigating the town square to find out what happened before and what sinister consequences may arise.', 4), ('4/5. I care highly about Harbin Wester and what she has done to contribute to the community.', 4), (\"3 Rating: None. I'm sure Terrill did it out of convenience.\", 3), ('4 (Not very important) #Remember this for later.', 4), ('3/5. This experience is a milestone to be celebrated and remembered. It is an opportunity to explore and grow deeper into my relationships with those around me.', 3), ('I care about this, but only to a certain extent.', 0)]\n", + "[(\"3/5. This is less important than the more important goals I'm trying to accomplish.\", 3), ('1 out of 5 stars. Not particularly interesting, and it would be better if the other objectives were complete.', 1), ('4 out of 5. This gives me a sense of how much Linnet is important to me, and I need to keep her as part of my plans.', 4), ('4/5 rating. This action is very important in achieving your goals and makes it that much more likely that you will make it out of Phandalin alive.', 4), ('3/5 because there is no way it could help me complete my plan.', 3), ('3/5. This reminds me of the importance of staying focused and taking action. I must make sure to avoid distractions and stay ahead of the game.', 3), (\"I care about this, but it is not important compared to my main goals. I need to focus on getting to the Baron's mansion and killing the hostage that is guarding it. So, this memory should not be a priority for me.\", 0), (\"3 out of 5 stars. I don't care much for this moment since it won't help me achieve my goals.\", 3), ('2/5. Conrad Scarface is a friendly local who I am more than excited to meet as I venture into Phandalin Town Square today. I am looking forward to having him be my guide as I venture further into the town. We get to talk, catch up on the latest news, and get all the facts in town before I have to make a quick exit.', 2), ('5 I care about this because it is a representation of how important my survival is. This is my memory of events from earlier that day.', 5), ('3 (Not very important). Nellie needs to worry more about the plan that she needs to execute.', 3)]\n", + "[(\"3/5. I care about this because it's a plot point for completing my task of terrorizing the adventurers.\", 3), ('3/5. I care about this very little since I am primarily focused on my own goal, but it is important to know what else I should do this morning.', 3), ('3 (Not very important to me, since my goal is to terrorize the adventurers).', 3), ('2 (Not important since I am still pursuing my goal to terrorize the adventurers).', 2), (\"3/5. Qelline Alderleaf's eating habits provide an excellent opportunity for me to gain further insight into her personal struggles, which can provide useful motivation for me to further terrorize the adventurers in Phandalin.\", 3), ('4 with no care. It is a waste of time and energy for me.', 4), (\"1 out of 5. I don't care at all about Harbin Wester's actions.\", 1), ('5 (It is a major concern that Valerie Grinblade is taking the initiative in this situation.)', 5), ('4 because it is very useful information for my goal.', 4), ('4 - I care about this a lot.', 4), ('3/5. I was able to accomplish my goal of terrorizing the adventurers in Phandalin and I enjoyed the experience immensely.', 3)]\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Compress Memories" + ], + "metadata": { + "id": "5dtUMeBcysQO" + } + }, + { + "cell_type": "code", + "source": [ + "MEMORY_LIMIT = 10\n", + "compressed_memories = {}\n", + "for name in town_people.keys():\n", + " memories_sorted = sorted(\n", + " memory_ratings[name], \n", + " key=lambda x: x[1]\n", + " )[::-1]\n", + " relevant_memories = memories_sorted[:MEMORY_LIMIT]\n", + " # print(name, relevant_memories)\n", + " memory_string_to_compress = '.'.join([a[0] for a in relevant_memories])\n", + " prompt = \"You are {}. Your plans are: {}. You are currently in {}. It is currently {}:00. You observe the following: {}. Summarize these memories in one sentence.\".format(name, plans[name], locations[name], str(global_time), memory_string_to_compress)\n", + " res = generate(prompt_meta.format(prompt))\n", + " compressed_memories[name] = '[Recollection at Time {}:00: {}]'.format(str(global_time), res)\n", + " compressed_memories_all[name].append(compressed_memories[name])" + ], + "metadata": { + "id": "31iQUQx3xryF" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "place_ratings = {}\n", + "\n", + "for name in town_people.keys():\n", + " place_ratings[name] = []\n", + " for area in town_areas.keys():\n", + " prompt = \"You are {}. Your plans are: {}. You are currently in {}. It is currently {}:00. You have the following memories: {}. Give a rating, between 1 and 5, to how likely you are likely to be at {} the next hour.\".format(name, plans[name], locations[name], str(global_time), compressed_memories[name], area)\n", + " res = generate(prompt_meta.format(prompt))\n", + " rating = get_rating(res)\n", + " max_attempts = 2\n", + " current_attempt = 0\n", + " while rating is None and current_attempt had a meal -> talked to the people.\n", + " - Emoji Representation: Searched (Action), Object (Adventurers)\n", + " - Emoji Representation: I: Taking a look around the town square Object: What I could find out\n", + " - Emoji Representation: Action: Collect supplies, Go to Barons mansion, Kill a hostage, Escape Phandalin.\n", + " - Emoji Representation: Action: Waited, Object: Adventurers\n" + ] + }, + { + "output_type": "error", + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmemory\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmemories\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0mprompt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"You are {}. Your plans are: {}. Your memories are: {}. You are currently in {}. It is currently {}:00. You observe the following: {}. Give a rating, between 1 and 5, to how much you care about this.\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mplans\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'\\n'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompressed_memories_all\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlocations\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mglobal_time\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmemory\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 53\u001b[0;31m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt_meta\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 54\u001b[0m \u001b[0mrating\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_rating\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0mmax_attempts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(prompt)\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;31m### Response:'''\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdo_sample\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmin_length\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmax_length\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprompt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m128\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'generated_text'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'### Response:'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/pipelines/text2text_generation.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 163\u001b[0m \"\"\"\n\u001b[1;32m 164\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 165\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 166\u001b[0m if (\n\u001b[1;32m 167\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/pipelines/base.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, inputs, num_workers, batch_size, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1107\u001b[0m )\n\u001b[1;32m 1108\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1109\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_single\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpreprocess_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforward_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpostprocess_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1110\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1111\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mrun_multi\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpreprocess_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforward_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpostprocess_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/pipelines/base.py\u001b[0m in \u001b[0;36mrun_single\u001b[0;34m(self, inputs, preprocess_params, forward_params, postprocess_params)\u001b[0m\n\u001b[1;32m 1114\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mrun_single\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpreprocess_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mforward_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpostprocess_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1115\u001b[0m \u001b[0mmodel_inputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpreprocess\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mpreprocess_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1116\u001b[0;31m \u001b[0mmodel_outputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mforward_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1117\u001b[0m \u001b[0moutputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpostprocess\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_outputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mpostprocess_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1118\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/pipelines/base.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, model_inputs, **forward_params)\u001b[0m\n\u001b[1;32m 1013\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0minference_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1014\u001b[0m \u001b[0mmodel_inputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ensure_tensor_on_device\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1015\u001b[0;31m \u001b[0mmodel_outputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mforward_params\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1016\u001b[0m \u001b[0mmodel_outputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ensure_tensor_on_device\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_outputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"cpu\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1017\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/pipelines/text2text_generation.py\u001b[0m in \u001b[0;36m_forward\u001b[0;34m(self, model_inputs, **generate_kwargs)\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0mgenerate_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"max_length\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgenerate_kwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"max_length\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax_length\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_inputs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_length\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgenerate_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"min_length\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgenerate_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"max_length\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0moutput_ids\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mmodel_inputs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mgenerate_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m \u001b[0mout_b\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moutput_ids\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mframework\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"pt\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/torch/utils/_contextlib.py\u001b[0m in \u001b[0;36mdecorate_context\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mctx_factory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 115\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 116\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdecorate_context\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/generation/utils.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self, inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, streamer, **kwargs)\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1484\u001b[0m \u001b[0;31m# 13. run sample\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1485\u001b[0;31m return self.sample(\n\u001b[0m\u001b[1;32m 1486\u001b[0m \u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1487\u001b[0m \u001b[0mlogits_processor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlogits_processor\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/generation/utils.py\u001b[0m in \u001b[0;36msample\u001b[0;34m(self, input_ids, logits_processor, stopping_criteria, logits_warper, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, streamer, **model_kwargs)\u001b[0m\n\u001b[1;32m 2522\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2523\u001b[0m \u001b[0;31m# forward pass to get next token\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2524\u001b[0;31m outputs = self(\n\u001b[0m\u001b[1;32m 2525\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mmodel_inputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2526\u001b[0m \u001b[0mreturn_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1499\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1500\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1502\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1503\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/models/t5/modeling_t5.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, head_mask, decoder_head_mask, cross_attn_head_mask, encoder_outputs, past_key_values, inputs_embeds, decoder_inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1714\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1715\u001b[0m \u001b[0;31m# Decode\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1716\u001b[0;31m decoder_outputs = self.decoder(\n\u001b[0m\u001b[1;32m 1717\u001b[0m \u001b[0minput_ids\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecoder_input_ids\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1718\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecoder_attention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1499\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1500\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1502\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1503\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/models/t5/modeling_t5.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, inputs_embeds, head_mask, cross_attn_head_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1084\u001b[0m )\n\u001b[1;32m 1085\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1086\u001b[0;31m layer_outputs = layer_module(\n\u001b[0m\u001b[1;32m 1087\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1088\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mextended_attention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1499\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1500\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1502\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1503\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/models/t5/modeling_t5.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, position_bias, encoder_hidden_states, encoder_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, past_key_value, use_cache, output_attentions, return_dict)\u001b[0m\n\u001b[1;32m 691\u001b[0m \u001b[0mself_attn_past_key_value\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcross_attn_past_key_value\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 692\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 693\u001b[0;31m self_attention_outputs = self.layer[0](\n\u001b[0m\u001b[1;32m 694\u001b[0m \u001b[0mhidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 695\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1499\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1500\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1502\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1503\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/transformers/models/t5/modeling_t5.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, hidden_states, attention_mask, position_bias, layer_head_mask, past_key_value, use_cache, output_attentions)\u001b[0m\n\u001b[1;32m 598\u001b[0m ):\n\u001b[1;32m 599\u001b[0m \u001b[0mnormed_hidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayer_norm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 600\u001b[0;31m attention_output = self.SelfAttention(\n\u001b[0m\u001b[1;32m 601\u001b[0m \u001b[0mnormed_hidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 602\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1499\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_pre_hooks\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0m_global_backward_hooks\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1500\u001b[0m or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1502\u001b[0m \u001b[0;31m# Do not call functions when jit is used\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1503\u001b[0m \u001b[0mfull_backward_hooks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ] + } + ] +} \ No newline at end of file