Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +52 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers, accelerate
|
2 |
+
|
3 |
+
print(accelerate.__version__)
|
4 |
+
print(transformers.__version__)
|
5 |
+
|
6 |
+
# Image Captioning
|
7 |
+
|
8 |
+
from transformers import AutoProcessor
|
9 |
+
from transformers import AutoModelForCausalLM
|
10 |
+
import torch
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # Set device to GPU if its available
|
14 |
+
|
15 |
+
checkpoint = "microsoft/git-base"
|
16 |
+
processor = AutoProcessor.from_pretrained(checkpoint) # We would load a tokenizer for language. Here we load a processor to process images
|
17 |
+
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
19 |
+
|
20 |
+
|
21 |
+
# Text Search
|
22 |
+
st.title("Flower Type Demo")
|
23 |
+
st.subheader("Upload an image and See how Chinese qisper works")
|
24 |
+
|
25 |
+
upload_file = st.file_uploader('Upload an Image')
|
26 |
+
|
27 |
+
if upload_file:
|
28 |
+
test_sample = Image.open(upload_file)
|
29 |
+
|
30 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
31 |
+
pixel_values = inputs.pixel_values.to(device)
|
32 |
+
|
33 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
34 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
35 |
+
|
36 |
+
|
37 |
+
for i in range(10):
|
38 |
+
st.write('New Caption is :')
|
39 |
+
st.write(generated_caption)
|
40 |
+
image = pipe(generated_caption).images[0]
|
41 |
+
|
42 |
+
display(image)
|
43 |
+
|
44 |
+
print("Model Loading + Inference time = " + str(time.time() - t1) + " seconds")
|
45 |
+
|
46 |
+
st.write("Showing the Image")
|
47 |
+
st.image (image, caption=name, width=None, use_column_width=None, clamp=False, channels='RGB', output_format='auto')
|
48 |
+
|
49 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
50 |
+
pixel_values = inputs.pixel_values.to(device)
|
51 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
52 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
evaluate
|
4 |
+
jiwer
|
5 |
+
accelerate
|
6 |
+
diffusers
|
7 |
+
transformers
|
8 |
+
scipy
|