|
import streamlit as st |
|
from huggingface_hub import HfApi |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from datetime import datetime |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from functools import lru_cache |
|
import time |
|
|
|
st.set_page_config(page_title="HF Contributions", layout="wide") |
|
api = HfApi() |
|
|
|
|
|
|
|
@lru_cache(maxsize=1000) |
|
def cached_repo_info(repo_id, repo_type): |
|
return api.repo_info(repo_id=repo_id, repo_type=repo_type) |
|
|
|
|
|
@lru_cache(maxsize=1000) |
|
def cached_list_commits(repo_id, repo_type): |
|
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type)) |
|
|
|
|
|
@lru_cache(maxsize=100) |
|
def cached_list_items(username, kind): |
|
if kind == "model": |
|
return list(api.list_models(author=username)) |
|
elif kind == "dataset": |
|
return list(api.list_datasets(author=username)) |
|
elif kind == "space": |
|
return list(api.list_spaces(author=username)) |
|
return [] |
|
|
|
|
|
|
|
class RateLimiter: |
|
def __init__(self, calls_per_second=10): |
|
self.calls_per_second = calls_per_second |
|
self.last_call = 0 |
|
|
|
def wait(self): |
|
current_time = time.time() |
|
time_since_last_call = current_time - self.last_call |
|
if time_since_last_call < (1.0 / self.calls_per_second): |
|
time.sleep((1.0 / self.calls_per_second) - time_since_last_call) |
|
self.last_call = time.time() |
|
|
|
|
|
rate_limiter = RateLimiter() |
|
|
|
|
|
|
|
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year): |
|
try: |
|
rate_limiter.wait() |
|
|
|
repo_info = cached_repo_info(repo_id, repo_type) |
|
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated): |
|
return [], [] |
|
|
|
|
|
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date() |
|
commit_dates = [] |
|
commit_count = 0 |
|
|
|
|
|
if initial_commit_date.year == selected_year: |
|
commit_dates.append(initial_commit_date) |
|
commit_count += 1 |
|
|
|
|
|
commits = cached_list_commits(repo_id, repo_type) |
|
for commit in commits: |
|
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date() |
|
if commit_date.year == selected_year: |
|
commit_dates.append(commit_date) |
|
commit_count += 1 |
|
|
|
return commit_dates, commit_count |
|
except Exception: |
|
return [], 0 |
|
|
|
|
|
|
|
def get_commit_events(username, kind=None, selected_year=None): |
|
commit_dates = [] |
|
items_with_type = [] |
|
kinds = [kind] if kind else ["model", "dataset", "space"] |
|
|
|
for k in kinds: |
|
try: |
|
items = cached_list_items(username, k) |
|
items_with_type.extend((item, k) for item in items) |
|
repo_ids = [item.id for item in items] |
|
|
|
|
|
chunk_size = 5 |
|
for i in range(0, len(repo_ids), chunk_size): |
|
chunk = repo_ids[i:i + chunk_size] |
|
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: |
|
future_to_repo = { |
|
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id |
|
for repo_id in chunk |
|
} |
|
for future in as_completed(future_to_repo): |
|
repo_commits, repo_count = future.result() |
|
if repo_commits: |
|
commit_dates.extend(repo_commits) |
|
except Exception as e: |
|
st.warning(f"Error fetching {k}s for {username}: {str(e)}") |
|
|
|
|
|
df = pd.DataFrame(commit_dates, columns=["date"]) |
|
if not df.empty: |
|
df = df.drop_duplicates() |
|
return df, items_with_type |
|
|
|
|
|
|
|
def make_calendar_heatmap(df, title, year): |
|
if df.empty: |
|
st.info(f"No {title.lower()} found for {year}.") |
|
return |
|
|
|
|
|
df["count"] = 1 |
|
df = df.groupby("date", as_index=False).sum() |
|
df["date"] = pd.to_datetime(df["date"]) |
|
|
|
|
|
start = pd.Timestamp(f"{year}-01-01") |
|
end = pd.Timestamp(f"{year}-12-31") |
|
all_days = pd.date_range(start=start, end=end) |
|
|
|
|
|
heatmap_data = pd.DataFrame({"date": all_days, "count": 0}) |
|
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y")) |
|
heatmap_data["count"] = heatmap_data["count_y"].fillna(0) |
|
heatmap_data = heatmap_data.drop("count_y", axis=1) |
|
|
|
|
|
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek |
|
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7 |
|
|
|
|
|
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0) |
|
|
|
|
|
month_labels = pd.date_range(start, end, freq="MS").strftime("%b") |
|
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7) |
|
|
|
|
|
from matplotlib.colors import ListedColormap, BoundaryNorm |
|
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] |
|
bounds = [0, 1, 3, 11, 31, float('inf')] |
|
cmap = ListedColormap(colors) |
|
norm = BoundaryNorm(bounds, cmap.N) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 1.2)) |
|
|
|
|
|
pivot_int = pivot.astype(int) |
|
|
|
|
|
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white", |
|
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"]) |
|
|
|
ax.set_title(f"{title}", fontsize=12, pad=10) |
|
ax.set_xlabel("") |
|
ax.set_ylabel("") |
|
ax.set_xticks(month_positions) |
|
ax.set_xticklabels(month_labels, fontsize=8) |
|
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8) |
|
st.pyplot(fig) |
|
|
|
|
|
|
|
with st.sidebar: |
|
st.title("π€ Contributor") |
|
username = st.selectbox( |
|
"Select or type a username", |
|
options=["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"], |
|
index=0 |
|
) |
|
st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True) |
|
custom = st.text_input("", placeholder="Enter custom username/org") |
|
if custom.strip(): |
|
username = custom.strip() |
|
year_options = list(range(datetime.now().year, 2017, -1)) |
|
selected_year = st.selectbox("ποΈ Year", options=year_options) |
|
|
|
|
|
st.title("π€ Hugging Face Contributions") |
|
if username: |
|
with st.spinner("Fetching commit data..."): |
|
|
|
commits_by_type = {} |
|
commit_counts_by_type = {} |
|
|
|
|
|
for kind in ["model", "dataset", "space"]: |
|
try: |
|
items = cached_list_items(username, kind) |
|
repo_ids = [item.id for item in items] |
|
|
|
|
|
chunk_size = 5 |
|
total_commits = 0 |
|
all_commit_dates = [] |
|
|
|
for i in range(0, len(repo_ids), chunk_size): |
|
chunk = repo_ids[i:i + chunk_size] |
|
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: |
|
future_to_repo = { |
|
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id |
|
for repo_id in chunk |
|
} |
|
for future in as_completed(future_to_repo): |
|
repo_commits, repo_count = future.result() |
|
if repo_commits: |
|
all_commit_dates.extend(repo_commits) |
|
total_commits += repo_count |
|
|
|
commits_by_type[kind] = all_commit_dates |
|
commit_counts_by_type[kind] = total_commits |
|
|
|
except Exception as e: |
|
st.warning(f"Error fetching {kind}s for {username}: {str(e)}") |
|
commits_by_type[kind] = [] |
|
commit_counts_by_type[kind] = 0 |
|
|
|
|
|
total_commits = sum(commit_counts_by_type.values()) |
|
|
|
st.subheader(f"{username}'s Activity in {selected_year}") |
|
st.metric("Total Commits", total_commits) |
|
|
|
|
|
all_commits = [] |
|
for commits in commits_by_type.values(): |
|
all_commits.extend(commits) |
|
all_df = pd.DataFrame(all_commits, columns=["date"]) |
|
if not all_df.empty: |
|
all_df = all_df.drop_duplicates() |
|
|
|
make_calendar_heatmap(all_df, "All Commits", selected_year) |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
for col, kind, emoji, label in [ |
|
(col1, "model", "π§ ", "Models"), |
|
(col2, "dataset", "π¦", "Datasets"), |
|
(col3, "space", "π", "Spaces") |
|
]: |
|
with col: |
|
try: |
|
total = len(cached_list_items(username, kind)) |
|
commits = commits_by_type.get(kind, []) |
|
commit_count = commit_counts_by_type.get(kind, 0) |
|
df_kind = pd.DataFrame(commits, columns=["date"]) |
|
if not df_kind.empty: |
|
df_kind = df_kind.drop_duplicates() |
|
st.metric(f"{emoji} {label}", total) |
|
st.metric(f"Commits in {selected_year}", commit_count) |
|
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year) |
|
except Exception as e: |
|
st.warning(f"Error processing {label}: {str(e)}") |
|
st.metric(f"{emoji} {label}", 0) |
|
st.metric(f"Commits in {selected_year}", 0) |
|
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year) |