Ritvik
Updated app
b68ab8a
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
st.set_page_config(page_title="HF Contributions", layout="wide")
api = HfApi()
# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
return api.repo_info(repo_id=repo_id, repo_type=repo_type)
@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))
@lru_cache(maxsize=100)
def cached_list_items(username, kind):
if kind == "model":
return list(api.list_models(author=username))
elif kind == "dataset":
return list(api.list_datasets(author=username))
elif kind == "space":
return list(api.list_spaces(author=username))
return []
# Rate limiting
class RateLimiter:
def __init__(self, calls_per_second=10):
self.calls_per_second = calls_per_second
self.last_call = 0
def wait(self):
current_time = time.time()
time_since_last_call = current_time - self.last_call
if time_since_last_call < (1.0 / self.calls_per_second):
time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
self.last_call = time.time()
rate_limiter = RateLimiter()
# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
try:
rate_limiter.wait()
# Skip private/gated repos upfront
repo_info = cached_repo_info(repo_id, repo_type)
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
return [], []
# Get initial commit date
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
commit_dates = []
commit_count = 0
# Add initial commit if it's from the selected year
if initial_commit_date.year == selected_year:
commit_dates.append(initial_commit_date)
commit_count += 1
# Get all commits
commits = cached_list_commits(repo_id, repo_type)
for commit in commits:
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
if commit_date.year == selected_year:
commit_dates.append(commit_date)
commit_count += 1
return commit_dates, commit_count
except Exception:
return [], 0
# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
commit_dates = []
items_with_type = []
kinds = [kind] if kind else ["model", "dataset", "space"]
for k in kinds:
try:
items = cached_list_items(username, k)
items_with_type.extend((item, k) for item in items)
repo_ids = [item.id for item in items]
# Optimized parallel fetch with chunking
chunk_size = 5 # Process 5 repos at a time
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits: # Only extend if we got commits
commit_dates.extend(repo_commits)
except Exception as e:
st.warning(f"Error fetching {k}s for {username}: {str(e)}")
# Create DataFrame with all commits
df = pd.DataFrame(commit_dates, columns=["date"])
if not df.empty:
df = df.drop_duplicates() # Remove any duplicate dates
return df, items_with_type
# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
if df.empty:
st.info(f"No {title.lower()} found for {year}.")
return
# Optimize DataFrame operations
df["count"] = 1
df = df.groupby("date", as_index=False).sum()
df["date"] = pd.to_datetime(df["date"])
# Create date range more efficiently
start = pd.Timestamp(f"{year}-01-01")
end = pd.Timestamp(f"{year}-12-31")
all_days = pd.date_range(start=start, end=end)
# Optimize DataFrame creation and merging
heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
heatmap_data = heatmap_data.drop("count_y", axis=1)
# Calculate week and day of week more efficiently
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7
# Create pivot table more efficiently
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)
# Optimize month labels calculation
month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)
# Create custom colormap with specific boundaries
from matplotlib.colors import ListedColormap, BoundaryNorm
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions
cmap = ListedColormap(colors)
norm = BoundaryNorm(bounds, cmap.N)
# Create plot more efficiently
fig, ax = plt.subplots(figsize=(12, 1.2))
# Convert pivot values to integers to ensure proper color mapping
pivot_int = pivot.astype(int)
# Create heatmap with explicit vmin and vmax
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])
ax.set_title(f"{title}", fontsize=12, pad=10)
ax.set_xlabel("")
ax.set_ylabel("")
ax.set_xticks(month_positions)
ax.set_xticklabels(month_labels, fontsize=8)
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
st.pyplot(fig)
# Sidebar
with st.sidebar:
st.title("πŸ‘€ Contributor")
username = st.selectbox(
"Select or type a username",
options=["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"],
index=0
)
st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True)
custom = st.text_input("", placeholder="Enter custom username/org")
if custom.strip():
username = custom.strip()
year_options = list(range(datetime.now().year, 2017, -1))
selected_year = st.selectbox("πŸ—“οΈ Year", options=year_options)
# Main Content
st.title("πŸ€— Hugging Face Contributions")
if username:
with st.spinner("Fetching commit data..."):
# Create a dictionary to store commits by type
commits_by_type = {}
commit_counts_by_type = {}
# Fetch commits for each type separately
for kind in ["model", "dataset", "space"]:
try:
items = cached_list_items(username, kind)
repo_ids = [item.id for item in items]
# Process repos in chunks
chunk_size = 5
total_commits = 0
all_commit_dates = []
for i in range(0, len(repo_ids), chunk_size):
chunk = repo_ids[i:i + chunk_size]
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
future_to_repo = {
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
for repo_id in chunk
}
for future in as_completed(future_to_repo):
repo_commits, repo_count = future.result()
if repo_commits:
all_commit_dates.extend(repo_commits)
total_commits += repo_count
commits_by_type[kind] = all_commit_dates
commit_counts_by_type[kind] = total_commits
except Exception as e:
st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
commits_by_type[kind] = []
commit_counts_by_type[kind] = 0
# Calculate total commits across all types
total_commits = sum(commit_counts_by_type.values())
st.subheader(f"{username}'s Activity in {selected_year}")
st.metric("Total Commits", total_commits)
# Create DataFrame for all commits
all_commits = []
for commits in commits_by_type.values():
all_commits.extend(commits)
all_df = pd.DataFrame(all_commits, columns=["date"])
if not all_df.empty:
all_df = all_df.drop_duplicates() # Remove any duplicate dates
make_calendar_heatmap(all_df, "All Commits", selected_year)
# Metrics and heatmaps for each type
col1, col2, col3 = st.columns(3)
for col, kind, emoji, label in [
(col1, "model", "🧠", "Models"),
(col2, "dataset", "πŸ“¦", "Datasets"),
(col3, "space", "πŸš€", "Spaces")
]:
with col:
try:
total = len(cached_list_items(username, kind))
commits = commits_by_type.get(kind, [])
commit_count = commit_counts_by_type.get(kind, 0)
df_kind = pd.DataFrame(commits, columns=["date"])
if not df_kind.empty:
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates
st.metric(f"{emoji} {label}", total)
st.metric(f"Commits in {selected_year}", commit_count)
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
except Exception as e:
st.warning(f"Error processing {label}: {str(e)}")
st.metric(f"{emoji} {label}", 0)
st.metric(f"Commits in {selected_year}", 0)
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)