Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline, AutoencoderKL | |
from PIL import Image | |
import spaces | |
# Initialize the VAE model and Diffusion Pipeline outside the GPU-enabled function for efficiency | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True | |
) | |
pipe.load_lora_weights('ritwikraha/khabib_sketch_LoRA') | |
if torch.cuda.is_available(): | |
_ = pipe.to("cuda") | |
# Define the image generation function | |
def generate_sketch(prompt, negative_prompt="ugly face, multiple bodies, bad anatomy, disfigured, extra fingers", guidance_scale=3, num_inference_steps=50): | |
"""Generate a sketch image based on a prompt using Stable Diffusion XL with LoRA weights. | |
Args: | |
prompt (str): Description of the image to generate. | |
negative_prompt (str, optional): Negative prompt to avoid certain features. Defaults to common undesirables. | |
guidance_scale (int, optional): The strength of the guidance. Defaults to 3. | |
num_inference_steps (int, optional): The number of steps for the diffusion process. Defaults to 50. | |
Returns: | |
PIL.Image: The generated sketch image. | |
""" | |
result = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
) | |
return result.images[0].convert("RGB") # Ensure the image is in RGB format | |
# Gradio Interface | |
description = """ | |
This demo utilizes the SDXL model LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on sketches of Khabib by ritwikraha using DreamBooth. | |
""" | |
# Setup Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML("<h1><center>Khabib Sketch Maker π₯</center></h1>") | |
gr.Markdown(description) | |
with gr.Group(): | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Enter your image prompt", value="a sketch of TOK khabib dancing, monchrome, pen sketch", scale=8) | |
negative_prompt_input = gr.Textbox(label="Enter negative prompt", value="ugly face, multiple bodies, bad anatomy, disfigured, extra fingers", lines=2) | |
guidance_scale_slider = gr.Slider(label="Guidance Scale", minimum=1, maximum=5, value=3) | |
steps_slider = gr.Slider(label="Number of Inference Steps", minimum=20, maximum=100, value=50) | |
submit_button = gr.Button("Submit") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Sketch") | |
submit_button.click( | |
fn=generate_sketch, | |
inputs=[prompt_input, negative_prompt_input, guidance_scale_slider, steps_slider], | |
outputs=output_image | |
) | |
demo.launch() | |