Spaces:
Sleeping
Sleeping
Commit
·
37bc6d8
1
Parent(s):
c9a87cd
Update app.py
Browse files
app.py
CHANGED
@@ -25,6 +25,28 @@ def classify_image(img, cnn_model):
|
|
25 |
return "No Tumor"
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Load your RNN SMS spam detection model
|
30 |
rnn_smsspam_model = tf.keras.models.load_model('rnn_smsspam_model.h5')
|
@@ -107,6 +129,17 @@ def main():
|
|
107 |
else:
|
108 |
st.write("Please enter some text for prediction")
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
elif model == "LSTM":
|
111 |
st.subheader("SMS Spam Detection")
|
112 |
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
|
|
25 |
return "No Tumor"
|
26 |
|
27 |
|
28 |
+
# Load your DNN SMS spam detection model
|
29 |
+
dnn_smsspam_model = tf.keras.models.load_model('dnn_smsspam_model.h5')
|
30 |
+
# Load the saved tokenizer
|
31 |
+
with open('dnn_smsspam_tokenizer.pickle', 'rb') as handle:
|
32 |
+
dnn_smsspam_tokenizer = pickle.load(handle)
|
33 |
+
|
34 |
+
def dnn_predict_message(input_text):
|
35 |
+
max_length=20
|
36 |
+
# Process input text similarly to training data
|
37 |
+
encoded_input = dnn_smsspam_tokenizer.texts_to_sequences([input_text])
|
38 |
+
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=max_length, padding='post')
|
39 |
+
# Get the probabilities of being classified as "Spam" for each input
|
40 |
+
predictions = dnn_smsspam_model.predict(padded_input)
|
41 |
+
# Define a threshold (e.g., 0.5) for classification
|
42 |
+
threshold = 0.5
|
43 |
+
# Make the predictions based on the threshold for each input
|
44 |
+
for prediction in predictions:
|
45 |
+
if prediction > threshold:
|
46 |
+
return "Spam"
|
47 |
+
else:
|
48 |
+
return "Not spam"
|
49 |
+
|
50 |
|
51 |
# Load your RNN SMS spam detection model
|
52 |
rnn_smsspam_model = tf.keras.models.load_model('rnn_smsspam_model.h5')
|
|
|
129 |
else:
|
130 |
st.write("Please enter some text for prediction")
|
131 |
|
132 |
+
elif model == "DNN":
|
133 |
+
st.subheader("SMS Spam Detection")
|
134 |
+
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|
135 |
+
|
136 |
+
if st.button("Predict"):
|
137 |
+
if user_input:
|
138 |
+
prediction_result = dnn_predict_message(user_input)
|
139 |
+
st.write(f"The message is classified as: {prediction_result}")
|
140 |
+
else:
|
141 |
+
st.write("Please enter some text for prediction")
|
142 |
+
|
143 |
elif model == "LSTM":
|
144 |
st.subheader("SMS Spam Detection")
|
145 |
user_input = st.text_area("Enter a message to classify as 'Spam' or 'Not spam': ")
|