Spaces:
Sleeping
Sleeping
Commit
·
835448b
1
Parent(s):
f8dc74c
Upload 4 files
Browse files- backprop_movie_model.pkl +3 -0
- backpropagation_movie_model.ipynb +932 -0
- perceptron_movie_model.ipynb +248 -0
- perceptron_movie_model.pkl +3 -0
backprop_movie_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e0779acfbb238a84f17b1e16c8a75eef8548f6b2c46f5195d750dd68eca9e757
|
| 3 |
+
size 4297
|
backpropagation_movie_model.ipynb
ADDED
|
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"#### Movie Sentiment Analysis Model using Backpropagation"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"from tensorflow.keras.datasets import imdb\n",
|
| 17 |
+
"import numpy as np\n",
|
| 18 |
+
"from tqdm import tqdm\n",
|
| 19 |
+
"from BackPropogation import BackPropogation\n",
|
| 20 |
+
"from tensorflow.keras.preprocessing import sequence\n",
|
| 21 |
+
"from sklearn.metrics import confusion_matrix, classification_report\n",
|
| 22 |
+
"import pickle"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 2,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"name": "stderr",
|
| 32 |
+
"output_type": "stream",
|
| 33 |
+
"text": [
|
| 34 |
+
" 20%|██ | 1/5 [00:00<00:00, 4.34it/s]"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"name": "stdout",
|
| 39 |
+
"output_type": "stream",
|
| 40 |
+
"text": [
|
| 41 |
+
"Updated Weights after epoch 0 with [ 3.00000000e-01 4.00000000e-01 5.00000000e-01 6.00000000e-01\n",
|
| 42 |
+
" 3.00000000e-01 2.00000000e-01 1.00000000e-01 2.00000000e-01\n",
|
| 43 |
+
" 4.00000000e-01 3.00000000e-01 4.00000000e-01 4.00000000e-01\n",
|
| 44 |
+
" 3.00000000e-01 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 45 |
+
" -2.00000000e-01 -2.77555756e-17 -1.00000000e-01 -1.00000000e-01\n",
|
| 46 |
+
" -2.00000000e-01 -2.77555756e-17 -2.00000000e-01 -1.00000000e-01\n",
|
| 47 |
+
" -1.00000000e-01 4.00000000e-01 5.00000000e-01 1.00000000e+00\n",
|
| 48 |
+
" 7.00000000e-01 5.00000000e-01 2.00000000e-01 4.00000000e-01\n",
|
| 49 |
+
" 2.00000000e-01 4.00000000e-01 7.00000000e-01 7.00000000e-01\n",
|
| 50 |
+
" 5.00000000e-01 3.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
| 51 |
+
" 2.00000000e-01 -2.77555756e-17 1.00000000e-01 4.00000000e-01\n",
|
| 52 |
+
" 2.00000000e-01 1.00000000e-01 -2.00000000e-01 -4.00000000e-01\n",
|
| 53 |
+
" -8.00000000e-01 -1.10000000e+00 -7.00000000e-01 -6.00000000e-01\n",
|
| 54 |
+
" -4.00000000e-01 -3.00000000e-01 2.77555756e-17 -3.00000000e-01\n",
|
| 55 |
+
" -5.00000000e-01 -5.00000000e-01 -6.00000000e-01 -3.00000000e-01\n",
|
| 56 |
+
" -4.00000000e-01 -6.00000000e-01 -7.00000000e-01 -9.00000000e-01\n",
|
| 57 |
+
" -6.00000000e-01 -5.00000000e-01 -3.00000000e-01 -2.00000000e-01\n",
|
| 58 |
+
" 1.00000000e-01 4.00000000e-01 4.00000000e-01 5.00000000e-01\n",
|
| 59 |
+
" 4.00000000e-01 4.00000000e-01 7.00000000e-01 4.00000000e-01\n",
|
| 60 |
+
" 1.00000000e-01 5.00000000e-01 4.00000000e-01 6.00000000e-01\n",
|
| 61 |
+
" 6.00000000e-01 2.00000000e-01 3.00000000e-01 6.00000000e-01\n",
|
| 62 |
+
" 2.00000000e-01 -1.00000000e-01 1.00000000e-01 -1.00000000e-01\n",
|
| 63 |
+
" -3.00000000e-01 -1.00000000e-01 2.00000000e-01 -3.00000000e-01\n",
|
| 64 |
+
" -5.00000000e-01 -5.00000000e-01 -1.10000000e+00 -1.10000000e+00\n",
|
| 65 |
+
" -8.00000000e-01 -8.00000000e-01 -5.00000000e-01 -5.00000000e-01\n",
|
| 66 |
+
" -4.00000000e-01 2.00000000e-01 3.00000000e-01 4.00000000e-01\n",
|
| 67 |
+
" 5.00000000e-01 2.00000000e-01 -2.00000000e-01 1.00000000e-01\n",
|
| 68 |
+
" 1.00000000e-01 2.77555756e-17 2.77555756e-17 -1.00000000e-01\n",
|
| 69 |
+
" 1.00000000e-01 -1.00000000e-01 -1.00000000e-01 -2.00000000e-01\n",
|
| 70 |
+
" 2.77555756e-17 2.77555756e-17 1.00000000e-01 -2.00000000e-01\n",
|
| 71 |
+
" -5.00000000e-01 -6.00000000e-01 -9.00000000e-01 -7.00000000e-01\n",
|
| 72 |
+
" -6.00000000e-01 -4.00000000e-01 -3.00000000e-01 -1.00000000e-01\n",
|
| 73 |
+
" -1.00000000e-01 -3.00000000e-01 -2.77555756e-17 -3.00000000e-01\n",
|
| 74 |
+
" 1.00000000e-01 2.00000000e-01 1.00000000e-01 4.00000000e-01\n",
|
| 75 |
+
" 2.00000000e-01 6.00000000e-01 1.00000000e+00 8.00000000e-01\n",
|
| 76 |
+
" 9.00000000e-01 5.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
| 77 |
+
" -2.00000000e-01 -4.00000000e-01 -4.00000000e-01 -7.00000000e-01\n",
|
| 78 |
+
" -4.00000000e-01 -7.00000000e-01 -7.00000000e-01 -3.00000000e-01\n",
|
| 79 |
+
" -5.00000000e-01 -2.00000000e-01 4.00000000e-01 7.00000000e-01\n",
|
| 80 |
+
" 9.00000000e-01 5.00000000e-01 2.00000000e-01 -6.00000000e-01\n",
|
| 81 |
+
" -3.00000000e-01 -2.77555756e-17 2.00000000e-01 1.00000000e-01\n",
|
| 82 |
+
" -3.00000000e-01 1.00000000e-01 5.00000000e-01 2.00000000e-01\n",
|
| 83 |
+
" 3.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
| 84 |
+
" 1.00000000e-01 2.77555756e-17 -1.00000000e-01 -4.00000000e-01\n",
|
| 85 |
+
" -5.00000000e-01 -3.00000000e-01 -7.00000000e-01 -1.30000000e+00\n",
|
| 86 |
+
" -1.00000000e+00 -4.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
| 87 |
+
" 4.00000000e-01 1.00000000e-01 -2.00000000e-01 2.77555756e-17\n",
|
| 88 |
+
" -1.00000000e-01 -6.00000000e-01 -5.00000000e-01 -2.00000000e-01\n",
|
| 89 |
+
" -7.00000000e-01 -3.00000000e-01 -9.00000000e-01 -7.00000000e-01\n",
|
| 90 |
+
" -2.00000000e-01 2.77555756e-17 -4.00000000e-01 -3.00000000e-01\n",
|
| 91 |
+
" -1.00000000e+00 -1.00000000e+00 -1.10000000e+00 -1.00000000e+00\n",
|
| 92 |
+
" -1.00000000e-01 3.00000000e-01 1.00000000e-01 2.77555756e-17\n",
|
| 93 |
+
" -1.00000000e-01 -2.00000000e-01 -3.00000000e-01 -7.00000000e-01\n",
|
| 94 |
+
" -7.00000000e-01 -2.00000000e-01 -6.00000000e-01 -6.00000000e-01\n",
|
| 95 |
+
" -2.00000000e-01 -3.00000000e-01 -2.00000000e-01 -4.00000000e-01\n",
|
| 96 |
+
" -1.30000000e+00 -7.00000000e-01 -2.00000000e-01 1.00000000e-01\n",
|
| 97 |
+
" 4.00000000e-01 8.00000000e-01 2.77555756e-17 -2.00000000e-01\n",
|
| 98 |
+
" -8.00000000e-01 -8.00000000e-01 -9.00000000e-01 -7.00000000e-01\n",
|
| 99 |
+
" -1.30000000e+00 -7.00000000e-01 -4.00000000e-01 -5.00000000e-01\n",
|
| 100 |
+
" -1.00000000e-01 -8.00000000e-01 -6.00000000e-01 -7.00000000e-01\n",
|
| 101 |
+
" -8.00000000e-01 -3.00000000e-01 -4.00000000e-01 1.00000000e-01\n",
|
| 102 |
+
" 1.20000000e+00 1.10000000e+00 1.20000000e+00 7.00000000e-01\n",
|
| 103 |
+
" 1.00000000e-01 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 104 |
+
" 1.00000000e-01 5.00000000e-01 3.00000000e-01 -2.77555756e-17\n",
|
| 105 |
+
" 3.00000000e-01 5.00000000e-01 6.00000000e-01 6.00000000e-01\n",
|
| 106 |
+
" 1.00000000e-01 -1.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
| 107 |
+
" 6.00000000e-01 3.00000000e-01 2.00000000e-01 6.00000000e-01\n",
|
| 108 |
+
" 2.77555756e-17 -8.00000000e-01 -9.00000000e-01 -6.00000000e-01\n",
|
| 109 |
+
" -6.00000000e-01 -6.00000000e-01 -4.00000000e-01 -3.00000000e-01\n",
|
| 110 |
+
" 1.00000000e-01 2.00000000e+00 2.00000000e+00 1.10000000e+00\n",
|
| 111 |
+
" -5.00000000e-01 -1.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
| 112 |
+
" -3.00000000e-01 -5.00000000e-01 -5.00000000e-01 -1.00000000e-01\n",
|
| 113 |
+
" 2.77555756e-17 2.77555756e-17 -3.00000000e-01 -3.00000000e-01\n",
|
| 114 |
+
" 2.00000000e-01 4.00000000e-01 6.00000000e-01 1.10000000e+00\n",
|
| 115 |
+
" 7.00000000e-01 -4.00000000e-01 -2.77555756e-17 3.00000000e-01\n",
|
| 116 |
+
" -3.00000000e-01 3.00000000e-01 -1.00000000e-01 9.00000000e-01\n",
|
| 117 |
+
" 2.00000000e-01 7.00000000e-01 1.10000000e+00 1.00000000e-01\n",
|
| 118 |
+
" 4.00000000e-01 -1.00000000e-01 -3.00000000e-01 5.00000000e-01\n",
|
| 119 |
+
" 2.77555756e-17 1.00000000e-01 6.00000000e-01 1.00000000e-01\n",
|
| 120 |
+
" -1.00000000e+00 -1.00000000e+00 -6.00000000e-01 -6.00000000e-01\n",
|
| 121 |
+
" -6.00000000e-01 -6.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
| 122 |
+
" -1.00000000e-01 -4.00000000e-01 -2.00000000e-01 3.00000000e-01\n",
|
| 123 |
+
" -6.00000000e-01 -1.10000000e+00 -1.20000000e+00 -1.00000000e-01\n",
|
| 124 |
+
" 8.00000000e-01 2.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
| 125 |
+
" -5.00000000e-01 -1.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 126 |
+
" -6.00000000e-01 -5.00000000e-01 -6.00000000e-01 -5.00000000e-01\n",
|
| 127 |
+
" 1.00000000e-01 2.00000000e-01 1.00000000e+00 -4.00000000e-01\n",
|
| 128 |
+
" 3.00000000e-01 1.00000000e-01 2.00000000e-01 1.30000000e+00\n",
|
| 129 |
+
" 4.00000000e-01 4.00000000e-01 -8.00000000e-01 1.00000000e-01\n",
|
| 130 |
+
" -2.00000000e-01 3.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
| 131 |
+
" -8.00000000e-01 3.00000000e-01 -1.00000000e+00 -4.00000000e-01\n",
|
| 132 |
+
" -2.00000000e-01 3.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
| 133 |
+
" 4.00000000e-01 6.00000000e-01 -3.00000000e-01 -6.00000000e-01\n",
|
| 134 |
+
" -1.10000000e+00 -5.00000000e-01 -7.00000000e-01 -4.00000000e-01\n",
|
| 135 |
+
" -1.10000000e+00 -9.00000000e-01 1.10000000e+00 -1.00000000e-01\n",
|
| 136 |
+
" -3.00000000e-01 1.00000000e-01 -4.00000000e-01 -5.00000000e-01\n",
|
| 137 |
+
" 8.00000000e-01 5.00000000e-01 -2.00000000e-01 -7.00000000e-01\n",
|
| 138 |
+
" 4.00000000e-01 6.00000000e-01 -4.00000000e-01 -7.00000000e-01\n",
|
| 139 |
+
" 1.00000000e-01 9.00000000e-01 1.00000000e-01 2.77555756e-17\n",
|
| 140 |
+
" 1.00000000e-01 7.00000000e-01 2.00000000e-01 7.00000000e-01\n",
|
| 141 |
+
" 5.00000000e-01 -5.00000000e-01 -4.00000000e-01 -8.00000000e-01\n",
|
| 142 |
+
" -4.00000000e-01 -6.00000000e-01 -1.00000000e+00 -7.00000000e-01\n",
|
| 143 |
+
" -6.00000000e-01 -1.00000000e-01 -7.00000000e-01 -1.30000000e+00\n",
|
| 144 |
+
" -4.00000000e-01 -3.00000000e-01 -8.00000000e-01 -5.00000000e-01\n",
|
| 145 |
+
" -2.00000000e-01 -5.00000000e-01 -2.00000000e-01 4.00000000e-01\n",
|
| 146 |
+
" 5.00000000e-01 3.00000000e-01 2.00000000e-01 -1.00000000e-01\n",
|
| 147 |
+
" -2.77555756e-17 2.77555756e-17 -3.00000000e-01 1.00000000e-01\n",
|
| 148 |
+
" 3.00000000e-01 -1.00000000e-01 -5.00000000e-01 -5.00000000e-01\n",
|
| 149 |
+
" -6.00000000e-01 -9.00000000e-01 -5.00000000e-01 2.00000000e-01\n",
|
| 150 |
+
" -3.00000000e-01 -7.00000000e-01 -8.00000000e-01 -1.00000000e-01\n",
|
| 151 |
+
" -3.00000000e-01 -2.00000000e-01 -2.00000000e-01 1.00000000e-01\n",
|
| 152 |
+
" 1.00000000e-01 1.10000000e+00 1.10000000e+00 -1.00000000e-01\n",
|
| 153 |
+
" -5.00000000e-01 -5.00000000e-01 2.00000000e-01 5.00000000e-01\n",
|
| 154 |
+
" 5.00000000e-01 1.00000000e-01 -2.00000000e-01 -6.00000000e-01\n",
|
| 155 |
+
" -1.00000000e-01 -3.00000000e-01 -1.00000000e-01 -2.77555756e-17\n",
|
| 156 |
+
" 3.00000000e-01 2.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
| 157 |
+
" -5.00000000e-01 -1.00000000e-01 -1.00000000e-01 2.77555756e-17\n",
|
| 158 |
+
" -1.00000000e-01 1.00000000e-01 2.00000000e-01 3.00000000e-01\n",
|
| 159 |
+
" 2.00000000e-01 2.00000000e-01 3.00000000e-01 3.00000000e-01\n",
|
| 160 |
+
" 3.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
| 161 |
+
" 1.00000000e-01 2.00000000e-01 3.00000000e-01 3.00000000e-01\n",
|
| 162 |
+
" 2.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
| 163 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 164 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 165 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01]\n"
|
| 166 |
+
]
|
| 167 |
+
},
|
| 168 |
+
{
|
| 169 |
+
"name": "stderr",
|
| 170 |
+
"output_type": "stream",
|
| 171 |
+
"text": [
|
| 172 |
+
" 40%|████ | 2/5 [00:00<00:00, 4.22it/s]"
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"name": "stdout",
|
| 177 |
+
"output_type": "stream",
|
| 178 |
+
"text": [
|
| 179 |
+
"Updated Weights after epoch 1 with [ 4.00000000e-01 7.00000000e-01 8.00000000e-01 9.00000000e-01\n",
|
| 180 |
+
" 2.00000000e-01 -2.00000000e-01 -5.00000000e-01 -3.00000000e-01\n",
|
| 181 |
+
" 2.00000000e-01 1.00000000e-01 5.00000000e-01 4.00000000e-01\n",
|
| 182 |
+
" 2.00000000e-01 3.00000000e-01 1.00000000e-01 -1.00000000e-01\n",
|
| 183 |
+
" -6.00000000e-01 -2.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
| 184 |
+
" -4.00000000e-01 -2.77555756e-17 -4.00000000e-01 -2.00000000e-01\n",
|
| 185 |
+
" -2.00000000e-01 6.00000000e-01 5.00000000e-01 1.40000000e+00\n",
|
| 186 |
+
" 8.00000000e-01 7.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
| 187 |
+
" -2.77555756e-17 3.00000000e-01 1.00000000e+00 1.00000000e+00\n",
|
| 188 |
+
" 6.00000000e-01 4.00000000e-01 1.00000000e-01 -2.77555756e-17\n",
|
| 189 |
+
" 1.00000000e-01 -2.77555756e-17 4.00000000e-01 7.00000000e-01\n",
|
| 190 |
+
" 5.00000000e-01 2.00000000e-01 -1.00000000e-01 -3.00000000e-01\n",
|
| 191 |
+
" -1.00000000e+00 -1.40000000e+00 -5.00000000e-01 -5.00000000e-01\n",
|
| 192 |
+
" -2.00000000e-01 -1.00000000e-01 3.00000000e-01 -1.00000000e-01\n",
|
| 193 |
+
" -3.00000000e-01 -6.00000000e-01 -9.00000000e-01 -3.00000000e-01\n",
|
| 194 |
+
" -6.00000000e-01 -8.00000000e-01 -9.00000000e-01 -1.40000000e+00\n",
|
| 195 |
+
" -8.00000000e-01 -7.00000000e-01 -4.00000000e-01 -3.00000000e-01\n",
|
| 196 |
+
" 1.00000000e-01 7.00000000e-01 5.00000000e-01 3.00000000e-01\n",
|
| 197 |
+
" 3.00000000e-01 2.00000000e-01 8.00000000e-01 3.00000000e-01\n",
|
| 198 |
+
" -3.00000000e-01 8.00000000e-01 6.00000000e-01 6.00000000e-01\n",
|
| 199 |
+
" 7.00000000e-01 1.00000000e-01 5.00000000e-01 1.00000000e+00\n",
|
| 200 |
+
" 2.77555756e-17 -5.00000000e-01 2.77555756e-17 -2.00000000e-01\n",
|
| 201 |
+
" -5.00000000e-01 -4.00000000e-01 4.00000000e-01 -3.00000000e-01\n",
|
| 202 |
+
" -7.00000000e-01 -6.00000000e-01 -1.70000000e+00 -1.60000000e+00\n",
|
| 203 |
+
" -1.10000000e+00 -1.00000000e+00 -5.00000000e-01 -4.00000000e-01\n",
|
| 204 |
+
" -3.00000000e-01 8.00000000e-01 1.00000000e+00 1.20000000e+00\n",
|
| 205 |
+
" 1.10000000e+00 6.00000000e-01 2.77555756e-17 4.00000000e-01\n",
|
| 206 |
+
" 3.00000000e-01 -3.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
| 207 |
+
" -1.00000000e-01 -1.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
| 208 |
+
" 2.77555756e-17 1.00000000e-01 5.00000000e-01 -1.00000000e-01\n",
|
| 209 |
+
" -9.00000000e-01 -9.00000000e-01 -1.30000000e+00 -8.00000000e-01\n",
|
| 210 |
+
" -1.00000000e+00 -6.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
| 211 |
+
" -2.00000000e-01 -3.00000000e-01 2.00000000e-01 -1.00000000e-01\n",
|
| 212 |
+
" 1.00000000e-01 4.00000000e-01 5.00000000e-01 9.00000000e-01\n",
|
| 213 |
+
" 6.00000000e-01 1.30000000e+00 1.90000000e+00 1.40000000e+00\n",
|
| 214 |
+
" 1.70000000e+00 8.00000000e-01 5.00000000e-01 -1.00000000e-01\n",
|
| 215 |
+
" -1.00000000e-01 -5.00000000e-01 -5.00000000e-01 -1.00000000e+00\n",
|
| 216 |
+
" -6.00000000e-01 -1.40000000e+00 -1.40000000e+00 -7.00000000e-01\n",
|
| 217 |
+
" -1.00000000e+00 -6.00000000e-01 4.00000000e-01 7.00000000e-01\n",
|
| 218 |
+
" 1.30000000e+00 5.00000000e-01 2.00000000e-01 -1.40000000e+00\n",
|
| 219 |
+
" -5.00000000e-01 1.00000000e-01 5.00000000e-01 3.00000000e-01\n",
|
| 220 |
+
" -9.00000000e-01 -3.00000000e-01 2.00000000e-01 -3.00000000e-01\n",
|
| 221 |
+
" 2.00000000e-01 2.77555756e-17 2.00000000e-01 6.00000000e-01\n",
|
| 222 |
+
" 6.00000000e-01 6.00000000e-01 3.00000000e-01 -1.00000000e-01\n",
|
| 223 |
+
" -4.00000000e-01 -3.00000000e-01 -1.30000000e+00 -2.30000000e+00\n",
|
| 224 |
+
" -1.60000000e+00 -8.00000000e-01 3.00000000e-01 7.00000000e-01\n",
|
| 225 |
+
" 9.00000000e-01 1.00000000e-01 -3.00000000e-01 1.00000000e-01\n",
|
| 226 |
+
" 3.00000000e-01 -4.00000000e-01 -3.00000000e-01 3.00000000e-01\n",
|
| 227 |
+
" -9.00000000e-01 2.77555756e-17 -1.30000000e+00 -1.00000000e+00\n",
|
| 228 |
+
" 2.77555756e-17 4.00000000e-01 -1.00000000e-01 -1.00000000e-01\n",
|
| 229 |
+
" -1.20000000e+00 -1.20000000e+00 -1.30000000e+00 -1.50000000e+00\n",
|
| 230 |
+
" -3.00000000e-01 2.00000000e-01 -3.00000000e-01 -2.00000000e-01\n",
|
| 231 |
+
" -5.00000000e-01 -3.00000000e-01 -3.00000000e-01 -1.10000000e+00\n",
|
| 232 |
+
" -9.00000000e-01 -2.00000000e-01 -8.00000000e-01 -7.00000000e-01\n",
|
| 233 |
+
" -1.00000000e-01 -6.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
| 234 |
+
" -1.90000000e+00 -9.00000000e-01 2.77555756e-17 6.00000000e-01\n",
|
| 235 |
+
" 1.00000000e+00 1.30000000e+00 3.00000000e-01 2.00000000e-01\n",
|
| 236 |
+
" -1.00000000e+00 -1.00000000e+00 -9.00000000e-01 -2.00000000e-01\n",
|
| 237 |
+
" -1.40000000e+00 -1.00000000e-01 7.00000000e-01 4.00000000e-01\n",
|
| 238 |
+
" 9.00000000e-01 1.00000000e-01 -3.00000000e-01 -7.00000000e-01\n",
|
| 239 |
+
" -1.30000000e+00 -4.00000000e-01 -1.00000000e+00 -4.00000000e-01\n",
|
| 240 |
+
" 1.30000000e+00 9.00000000e-01 1.20000000e+00 3.00000000e-01\n",
|
| 241 |
+
" -8.00000000e-01 -2.00000000e-01 -1.00000000e-01 -4.00000000e-01\n",
|
| 242 |
+
" -2.00000000e-01 4.00000000e-01 -4.00000000e-01 -7.00000000e-01\n",
|
| 243 |
+
" 1.00000000e-01 1.00000000e+00 1.10000000e+00 1.00000000e+00\n",
|
| 244 |
+
" 6.00000000e-01 2.00000000e-01 -3.00000000e-01 -2.77555756e-17\n",
|
| 245 |
+
" 1.10000000e+00 5.00000000e-01 4.00000000e-01 1.30000000e+00\n",
|
| 246 |
+
" -2.00000000e-01 -1.00000000e+00 -1.00000000e+00 -3.00000000e-01\n",
|
| 247 |
+
" -5.00000000e-01 -5.00000000e-01 -6.00000000e-01 -6.00000000e-01\n",
|
| 248 |
+
" 2.00000000e-01 3.00000000e+00 2.80000000e+00 1.70000000e+00\n",
|
| 249 |
+
" -9.00000000e-01 -4.00000000e-01 6.00000000e-01 -3.00000000e-01\n",
|
| 250 |
+
" -5.00000000e-01 -9.00000000e-01 -6.00000000e-01 -3.00000000e-01\n",
|
| 251 |
+
" -1.00000000e-01 3.00000000e-01 -3.00000000e-01 -8.00000000e-01\n",
|
| 252 |
+
" 4.00000000e-01 3.00000000e-01 4.00000000e-01 1.60000000e+00\n",
|
| 253 |
+
" 1.30000000e+00 -6.00000000e-01 -1.00000000e-01 6.00000000e-01\n",
|
| 254 |
+
" -8.00000000e-01 2.00000000e-01 -6.00000000e-01 1.80000000e+00\n",
|
| 255 |
+
" 3.00000000e-01 9.00000000e-01 1.70000000e+00 3.00000000e-01\n",
|
| 256 |
+
" 5.00000000e-01 -3.00000000e-01 -6.00000000e-01 9.00000000e-01\n",
|
| 257 |
+
" -1.00000000e-01 -3.00000000e-01 6.00000000e-01 2.00000000e-01\n",
|
| 258 |
+
" -1.00000000e+00 -1.50000000e+00 -9.00000000e-01 -5.00000000e-01\n",
|
| 259 |
+
" -9.00000000e-01 -1.10000000e+00 -4.00000000e-01 1.00000000e-01\n",
|
| 260 |
+
" 9.00000000e-01 -4.00000000e-01 -9.00000000e-01 5.00000000e-01\n",
|
| 261 |
+
" -9.00000000e-01 -1.20000000e+00 -1.20000000e+00 4.00000000e-01\n",
|
| 262 |
+
" 1.40000000e+00 3.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
| 263 |
+
" -6.00000000e-01 -4.00000000e-01 1.00000000e-01 -1.00000000e-01\n",
|
| 264 |
+
" -8.00000000e-01 -3.00000000e-01 -6.00000000e-01 -1.00000000e-01\n",
|
| 265 |
+
" 4.00000000e-01 3.00000000e-01 1.80000000e+00 -8.00000000e-01\n",
|
| 266 |
+
" 4.00000000e-01 -4.00000000e-01 -3.00000000e-01 2.10000000e+00\n",
|
| 267 |
+
" 5.00000000e-01 9.00000000e-01 -7.00000000e-01 8.00000000e-01\n",
|
| 268 |
+
" -3.00000000e-01 8.00000000e-01 7.00000000e-01 -3.00000000e-01\n",
|
| 269 |
+
" -6.00000000e-01 1.40000000e+00 -5.00000000e-01 -2.00000000e-01\n",
|
| 270 |
+
" -3.00000000e-01 2.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 271 |
+
" 1.20000000e+00 9.00000000e-01 -6.00000000e-01 -1.00000000e+00\n",
|
| 272 |
+
" -1.30000000e+00 -1.00000000e-01 -9.00000000e-01 -3.00000000e-01\n",
|
| 273 |
+
" -1.70000000e+00 -1.10000000e+00 2.00000000e+00 -3.00000000e-01\n",
|
| 274 |
+
" -4.00000000e-01 2.00000000e-01 -6.00000000e-01 -1.30000000e+00\n",
|
| 275 |
+
" 8.00000000e-01 1.00000000e-01 -1.00000000e-01 -1.40000000e+00\n",
|
| 276 |
+
" 6.00000000e-01 8.00000000e-01 -1.30000000e+00 -1.40000000e+00\n",
|
| 277 |
+
" -2.77555756e-17 1.40000000e+00 -1.00000000e-01 -5.00000000e-01\n",
|
| 278 |
+
" -3.00000000e-01 1.00000000e+00 3.00000000e-01 1.30000000e+00\n",
|
| 279 |
+
" 1.20000000e+00 -5.00000000e-01 2.77555756e-17 -6.00000000e-01\n",
|
| 280 |
+
" 2.77555756e-17 -4.00000000e-01 -1.00000000e+00 -7.00000000e-01\n",
|
| 281 |
+
" -3.00000000e-01 5.00000000e-01 -6.00000000e-01 -1.60000000e+00\n",
|
| 282 |
+
" -2.00000000e-01 -1.00000000e-01 -9.00000000e-01 -5.00000000e-01\n",
|
| 283 |
+
" 1.00000000e-01 -6.00000000e-01 -3.00000000e-01 9.00000000e-01\n",
|
| 284 |
+
" 4.00000000e-01 4.00000000e-01 7.00000000e-01 -1.00000000e-01\n",
|
| 285 |
+
" -1.00000000e-01 -3.00000000e-01 -8.00000000e-01 1.00000000e-01\n",
|
| 286 |
+
" 2.00000000e-01 -2.00000000e-01 -9.00000000e-01 -9.00000000e-01\n",
|
| 287 |
+
" -7.00000000e-01 -1.30000000e+00 -5.00000000e-01 7.00000000e-01\n",
|
| 288 |
+
" 1.00000000e-01 -5.00000000e-01 -6.00000000e-01 4.00000000e-01\n",
|
| 289 |
+
" -1.00000000e-01 -3.00000000e-01 -4.00000000e-01 2.77555756e-17\n",
|
| 290 |
+
" -2.00000000e-01 1.00000000e+00 1.10000000e+00 -7.00000000e-01\n",
|
| 291 |
+
" -1.40000000e+00 -1.40000000e+00 4.00000000e-01 1.20000000e+00\n",
|
| 292 |
+
" 1.10000000e+00 2.00000000e-01 -1.00000000e-01 -1.10000000e+00\n",
|
| 293 |
+
" 1.00000000e-01 -5.00000000e-01 -1.00000000e-01 -1.00000000e-01\n",
|
| 294 |
+
" 7.00000000e-01 6.00000000e-01 -4.00000000e-01 1.00000000e-01\n",
|
| 295 |
+
" -5.00000000e-01 2.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 296 |
+
" -1.00000000e-01 1.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
| 297 |
+
" 1.00000000e-01 2.77555756e-17 1.00000000e-01 2.00000000e-01\n",
|
| 298 |
+
" 3.00000000e-01 2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
| 299 |
+
" -2.77555756e-17 -2.77555756e-17 2.00000000e-01 2.00000000e-01\n",
|
| 300 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 2.00000000e-01\n",
|
| 301 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
| 302 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
| 303 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17]\n"
|
| 304 |
+
]
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"name": "stderr",
|
| 308 |
+
"output_type": "stream",
|
| 309 |
+
"text": [
|
| 310 |
+
" 60%|██████ | 3/5 [00:00<00:00, 4.37it/s]"
|
| 311 |
+
]
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"name": "stdout",
|
| 315 |
+
"output_type": "stream",
|
| 316 |
+
"text": [
|
| 317 |
+
"Updated Weights after epoch 2 with [ 5.00000000e-01 8.00000000e-01 1.00000000e+00 1.20000000e+00\n",
|
| 318 |
+
" 1.00000000e-01 -4.00000000e-01 -9.00000000e-01 -5.00000000e-01\n",
|
| 319 |
+
" 3.00000000e-01 3.00000000e-01 1.00000000e+00 9.00000000e-01\n",
|
| 320 |
+
" 7.00000000e-01 8.00000000e-01 5.00000000e-01 2.00000000e-01\n",
|
| 321 |
+
" -5.00000000e-01 1.00000000e-01 -3.00000000e-01 -1.00000000e-01\n",
|
| 322 |
+
" -5.00000000e-01 -1.00000000e-01 -7.00000000e-01 -4.00000000e-01\n",
|
| 323 |
+
" -4.00000000e-01 8.00000000e-01 6.00000000e-01 1.70000000e+00\n",
|
| 324 |
+
" 1.00000000e+00 1.10000000e+00 3.00000000e-01 7.00000000e-01\n",
|
| 325 |
+
" -2.77555756e-17 5.00000000e-01 1.50000000e+00 1.60000000e+00\n",
|
| 326 |
+
" 1.00000000e+00 8.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 327 |
+
" 3.00000000e-01 1.00000000e-01 6.00000000e-01 1.10000000e+00\n",
|
| 328 |
+
" 8.00000000e-01 5.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
| 329 |
+
" -1.00000000e+00 -1.60000000e+00 -1.00000000e-01 -3.00000000e-01\n",
|
| 330 |
+
" 1.00000000e-01 2.00000000e-01 6.00000000e-01 2.77555756e-17\n",
|
| 331 |
+
" -3.00000000e-01 -8.00000000e-01 -1.30000000e+00 -4.00000000e-01\n",
|
| 332 |
+
" -6.00000000e-01 -9.00000000e-01 -1.00000000e+00 -1.80000000e+00\n",
|
| 333 |
+
" -9.00000000e-01 -8.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
| 334 |
+
" 4.00000000e-01 1.10000000e+00 7.00000000e-01 5.00000000e-01\n",
|
| 335 |
+
" 6.00000000e-01 4.00000000e-01 1.50000000e+00 7.00000000e-01\n",
|
| 336 |
+
" -3.00000000e-01 1.30000000e+00 1.10000000e+00 1.30000000e+00\n",
|
| 337 |
+
" 1.30000000e+00 3.00000000e-01 7.00000000e-01 1.20000000e+00\n",
|
| 338 |
+
" -2.00000000e-01 -1.00000000e+00 -3.00000000e-01 -3.00000000e-01\n",
|
| 339 |
+
" -9.00000000e-01 -6.00000000e-01 9.00000000e-01 -2.00000000e-01\n",
|
| 340 |
+
" -9.00000000e-01 -8.00000000e-01 -2.10000000e+00 -2.00000000e+00\n",
|
| 341 |
+
" -1.30000000e+00 -1.10000000e+00 -3.00000000e-01 -3.00000000e-01\n",
|
| 342 |
+
" -4.00000000e-01 9.00000000e-01 1.20000000e+00 1.50000000e+00\n",
|
| 343 |
+
" 1.30000000e+00 6.00000000e-01 -4.00000000e-01 2.00000000e-01\n",
|
| 344 |
+
" 1.00000000e-01 -4.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
| 345 |
+
" 1.00000000e-01 4.00000000e-01 1.00000000e-01 -3.00000000e-01\n",
|
| 346 |
+
" 1.00000000e-01 2.00000000e-01 7.00000000e-01 2.77555756e-17\n",
|
| 347 |
+
" -1.50000000e+00 -1.40000000e+00 -1.90000000e+00 -1.10000000e+00\n",
|
| 348 |
+
" -1.20000000e+00 -6.00000000e-01 -6.00000000e-01 1.00000000e-01\n",
|
| 349 |
+
" -1.00000000e-01 -4.00000000e-01 3.00000000e-01 -1.00000000e-01\n",
|
| 350 |
+
" 1.00000000e-01 3.00000000e-01 2.00000000e-01 4.00000000e-01\n",
|
| 351 |
+
" -1.00000000e-01 9.00000000e-01 1.50000000e+00 7.00000000e-01\n",
|
| 352 |
+
" 1.40000000e+00 2.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
| 353 |
+
" -2.00000000e-01 -6.00000000e-01 -6.00000000e-01 -1.30000000e+00\n",
|
| 354 |
+
" -5.00000000e-01 -1.70000000e+00 -1.90000000e+00 -1.00000000e+00\n",
|
| 355 |
+
" -1.40000000e+00 -8.00000000e-01 6.00000000e-01 1.00000000e+00\n",
|
| 356 |
+
" 2.00000000e+00 9.00000000e-01 7.00000000e-01 -1.60000000e+00\n",
|
| 357 |
+
" -5.00000000e-01 2.00000000e-01 8.00000000e-01 7.00000000e-01\n",
|
| 358 |
+
" -1.10000000e+00 -1.00000000e-01 7.00000000e-01 -2.00000000e-01\n",
|
| 359 |
+
" 4.00000000e-01 -2.00000000e-01 -1.00000000e-01 5.00000000e-01\n",
|
| 360 |
+
" 9.00000000e-01 8.00000000e-01 5.00000000e-01 2.00000000e-01\n",
|
| 361 |
+
" -2.00000000e-01 2.77555756e-17 -1.60000000e+00 -2.60000000e+00\n",
|
| 362 |
+
" -1.60000000e+00 -8.00000000e-01 6.00000000e-01 1.10000000e+00\n",
|
| 363 |
+
" 1.50000000e+00 1.00000000e-01 -3.00000000e-01 2.77555756e-17\n",
|
| 364 |
+
" 4.00000000e-01 -8.00000000e-01 -3.00000000e-01 3.00000000e-01\n",
|
| 365 |
+
" -1.80000000e+00 2.77555756e-17 -1.80000000e+00 -1.60000000e+00\n",
|
| 366 |
+
" -2.00000000e-01 5.00000000e-01 -2.00000000e-01 -1.00000000e-01\n",
|
| 367 |
+
" -1.50000000e+00 -1.70000000e+00 -1.80000000e+00 -1.70000000e+00\n",
|
| 368 |
+
" 4.00000000e-01 1.20000000e+00 2.77555756e-17 2.77555756e-17\n",
|
| 369 |
+
" -9.00000000e-01 -5.00000000e-01 -5.00000000e-01 -1.80000000e+00\n",
|
| 370 |
+
" -1.50000000e+00 -5.00000000e-01 -1.10000000e+00 -6.00000000e-01\n",
|
| 371 |
+
" 1.00000000e-01 -5.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
| 372 |
+
" -2.20000000e+00 -1.00000000e+00 2.00000000e-01 7.00000000e-01\n",
|
| 373 |
+
" 1.40000000e+00 2.00000000e+00 6.00000000e-01 4.00000000e-01\n",
|
| 374 |
+
" -1.00000000e+00 -1.00000000e+00 -1.10000000e+00 -3.00000000e-01\n",
|
| 375 |
+
" -2.10000000e+00 -5.00000000e-01 6.00000000e-01 2.00000000e-01\n",
|
| 376 |
+
" 1.20000000e+00 4.00000000e-01 -6.00000000e-01 -1.10000000e+00\n",
|
| 377 |
+
" -1.70000000e+00 -1.00000000e-01 -1.20000000e+00 -3.00000000e-01\n",
|
| 378 |
+
" 1.80000000e+00 9.00000000e-01 1.90000000e+00 5.00000000e-01\n",
|
| 379 |
+
" -1.10000000e+00 1.00000000e-01 3.00000000e-01 -2.00000000e-01\n",
|
| 380 |
+
" 2.00000000e-01 1.10000000e+00 -2.77555756e-17 -6.00000000e-01\n",
|
| 381 |
+
" -2.00000000e-01 1.00000000e+00 1.10000000e+00 8.00000000e-01\n",
|
| 382 |
+
" -1.00000000e-01 -3.00000000e-01 -1.00000000e+00 -2.00000000e-01\n",
|
| 383 |
+
" 1.50000000e+00 5.00000000e-01 6.00000000e-01 2.00000000e+00\n",
|
| 384 |
+
" -5.00000000e-01 -1.80000000e+00 -1.40000000e+00 -5.00000000e-01\n",
|
| 385 |
+
" -7.00000000e-01 -9.00000000e-01 -1.40000000e+00 -1.70000000e+00\n",
|
| 386 |
+
" -7.00000000e-01 3.10000000e+00 3.10000000e+00 1.70000000e+00\n",
|
| 387 |
+
" -1.70000000e+00 -7.00000000e-01 9.00000000e-01 1.00000000e-01\n",
|
| 388 |
+
" -4.00000000e-01 -1.50000000e+00 -7.00000000e-01 -4.00000000e-01\n",
|
| 389 |
+
" -1.00000000e-01 8.00000000e-01 -1.00000000e-01 -4.00000000e-01\n",
|
| 390 |
+
" 1.10000000e+00 3.00000000e-01 3.00000000e-01 1.50000000e+00\n",
|
| 391 |
+
" 1.50000000e+00 -1.00000000e+00 -7.00000000e-01 4.00000000e-01\n",
|
| 392 |
+
" -1.70000000e+00 -2.00000000e-01 -1.40000000e+00 2.00000000e+00\n",
|
| 393 |
+
" -3.00000000e-01 6.00000000e-01 1.80000000e+00 1.00000000e-01\n",
|
| 394 |
+
" 3.00000000e-01 -7.00000000e-01 -1.00000000e+00 1.50000000e+00\n",
|
| 395 |
+
" -1.00000000e-01 -5.00000000e-01 6.00000000e-01 2.00000000e-01\n",
|
| 396 |
+
" -1.20000000e+00 -2.20000000e+00 -1.20000000e+00 -4.00000000e-01\n",
|
| 397 |
+
" -7.00000000e-01 -9.00000000e-01 -4.00000000e-01 2.77555756e-17\n",
|
| 398 |
+
" 9.00000000e-01 -6.00000000e-01 -1.40000000e+00 1.00000000e+00\n",
|
| 399 |
+
" -9.00000000e-01 -1.30000000e+00 -1.20000000e+00 2.00000000e-01\n",
|
| 400 |
+
" 1.10000000e+00 1.00000000e-01 -1.30000000e+00 -1.00000000e-01\n",
|
| 401 |
+
" -6.00000000e-01 2.77555756e-17 8.00000000e-01 6.00000000e-01\n",
|
| 402 |
+
" -6.00000000e-01 -5.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
| 403 |
+
" 4.00000000e-01 1.00000000e-01 2.00000000e+00 -1.00000000e+00\n",
|
| 404 |
+
" 7.00000000e-01 -5.00000000e-01 -8.00000000e-01 2.70000000e+00\n",
|
| 405 |
+
" 2.00000000e-01 1.00000000e+00 -1.00000000e+00 1.00000000e+00\n",
|
| 406 |
+
" -9.00000000e-01 4.00000000e-01 4.00000000e-01 -1.10000000e+00\n",
|
| 407 |
+
" -1.20000000e+00 1.40000000e+00 -1.10000000e+00 -5.00000000e-01\n",
|
| 408 |
+
" -4.00000000e-01 -1.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
| 409 |
+
" 1.60000000e+00 1.60000000e+00 -4.00000000e-01 -5.00000000e-01\n",
|
| 410 |
+
" -2.00000000e+00 1.00000000e-01 -1.40000000e+00 -4.00000000e-01\n",
|
| 411 |
+
" -1.90000000e+00 -1.10000000e+00 2.90000000e+00 -2.00000000e-01\n",
|
| 412 |
+
" 2.77555756e-17 3.00000000e-01 -7.00000000e-01 -1.50000000e+00\n",
|
| 413 |
+
" 1.50000000e+00 6.00000000e-01 3.00000000e-01 -1.50000000e+00\n",
|
| 414 |
+
" 1.40000000e+00 1.70000000e+00 -1.20000000e+00 -1.60000000e+00\n",
|
| 415 |
+
" 1.00000000e-01 2.10000000e+00 -2.00000000e-01 -9.00000000e-01\n",
|
| 416 |
+
" -3.00000000e-01 1.30000000e+00 2.00000000e-01 1.30000000e+00\n",
|
| 417 |
+
" 1.40000000e+00 -5.00000000e-01 -1.00000000e-01 -7.00000000e-01\n",
|
| 418 |
+
" 2.00000000e-01 -3.00000000e-01 -1.00000000e+00 -5.00000000e-01\n",
|
| 419 |
+
" -5.00000000e-01 9.00000000e-01 -7.00000000e-01 -1.90000000e+00\n",
|
| 420 |
+
" -1.00000000e-01 1.00000000e-01 -1.20000000e+00 -5.00000000e-01\n",
|
| 421 |
+
" 2.77555756e-17 -6.00000000e-01 -3.00000000e-01 1.00000000e+00\n",
|
| 422 |
+
" 3.00000000e-01 3.00000000e-01 1.20000000e+00 -3.00000000e-01\n",
|
| 423 |
+
" 2.00000000e-01 -2.77555756e-17 -1.00000000e+00 -1.00000000e-01\n",
|
| 424 |
+
" 3.00000000e-01 1.00000000e-01 -6.00000000e-01 -8.00000000e-01\n",
|
| 425 |
+
" -6.00000000e-01 -1.50000000e+00 -4.00000000e-01 1.10000000e+00\n",
|
| 426 |
+
" 3.00000000e-01 -6.00000000e-01 -1.20000000e+00 2.00000000e-01\n",
|
| 427 |
+
" -1.00000000e-01 -2.00000000e-01 -3.00000000e-01 4.00000000e-01\n",
|
| 428 |
+
" -3.00000000e-01 1.40000000e+00 1.50000000e+00 -7.00000000e-01\n",
|
| 429 |
+
" -1.80000000e+00 -2.00000000e+00 5.00000000e-01 1.10000000e+00\n",
|
| 430 |
+
" 1.10000000e+00 1.00000000e-01 1.00000000e-01 -9.00000000e-01\n",
|
| 431 |
+
" 4.00000000e-01 -6.00000000e-01 -2.00000000e-01 -3.00000000e-01\n",
|
| 432 |
+
" 8.00000000e-01 6.00000000e-01 -8.00000000e-01 2.77555756e-17\n",
|
| 433 |
+
" -7.00000000e-01 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 434 |
+
" -1.00000000e-01 1.00000000e-01 2.00000000e-01 5.00000000e-01\n",
|
| 435 |
+
" 3.00000000e-01 1.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
| 436 |
+
" 4.00000000e-01 3.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 437 |
+
" -1.00000000e-01 -1.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
| 438 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 3.00000000e-01\n",
|
| 439 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 440 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 441 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01]\n"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"name": "stderr",
|
| 446 |
+
"output_type": "stream",
|
| 447 |
+
"text": [
|
| 448 |
+
" 80%|████████ | 4/5 [00:00<00:00, 4.36it/s]"
|
| 449 |
+
]
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"name": "stdout",
|
| 453 |
+
"output_type": "stream",
|
| 454 |
+
"text": [
|
| 455 |
+
"Updated Weights after epoch 3 with [-2.77555756e-17 4.00000000e-01 7.00000000e-01 1.00000000e+00\n",
|
| 456 |
+
" -4.00000000e-01 -1.00000000e+00 -1.70000000e+00 -1.20000000e+00\n",
|
| 457 |
+
" -1.00000000e-01 -1.00000000e-01 9.00000000e-01 9.00000000e-01\n",
|
| 458 |
+
" 6.00000000e-01 7.00000000e-01 1.00000000e-01 -3.00000000e-01\n",
|
| 459 |
+
" -1.00000000e+00 -1.00000000e-01 -6.00000000e-01 -2.00000000e-01\n",
|
| 460 |
+
" -6.00000000e-01 -2.00000000e-01 -1.10000000e+00 -7.00000000e-01\n",
|
| 461 |
+
" -7.00000000e-01 1.00000000e+00 6.00000000e-01 2.00000000e+00\n",
|
| 462 |
+
" 1.20000000e+00 1.20000000e+00 2.00000000e-01 7.00000000e-01\n",
|
| 463 |
+
" -3.00000000e-01 3.00000000e-01 1.70000000e+00 1.80000000e+00\n",
|
| 464 |
+
" 1.10000000e+00 9.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
| 465 |
+
" 3.00000000e-01 2.00000000e-01 8.00000000e-01 1.50000000e+00\n",
|
| 466 |
+
" 1.20000000e+00 7.00000000e-01 1.00000000e-01 -2.00000000e-01\n",
|
| 467 |
+
" -1.40000000e+00 -2.10000000e+00 -1.00000000e-01 -4.00000000e-01\n",
|
| 468 |
+
" 2.00000000e-01 3.00000000e-01 8.00000000e-01 2.77555756e-17\n",
|
| 469 |
+
" -3.00000000e-01 -9.00000000e-01 -1.60000000e+00 -5.00000000e-01\n",
|
| 470 |
+
" -7.00000000e-01 -1.10000000e+00 -1.20000000e+00 -2.30000000e+00\n",
|
| 471 |
+
" -1.20000000e+00 -1.10000000e+00 -5.00000000e-01 -3.00000000e-01\n",
|
| 472 |
+
" 6.00000000e-01 1.50000000e+00 9.00000000e-01 4.00000000e-01\n",
|
| 473 |
+
" 5.00000000e-01 2.00000000e-01 1.70000000e+00 5.00000000e-01\n",
|
| 474 |
+
" -9.00000000e-01 1.30000000e+00 9.00000000e-01 1.40000000e+00\n",
|
| 475 |
+
" 1.40000000e+00 2.00000000e-01 7.00000000e-01 1.50000000e+00\n",
|
| 476 |
+
" -4.00000000e-01 -1.20000000e+00 -2.00000000e-01 -1.00000000e-01\n",
|
| 477 |
+
" -9.00000000e-01 -4.00000000e-01 1.60000000e+00 3.00000000e-01\n",
|
| 478 |
+
" -7.00000000e-01 -5.00000000e-01 -2.20000000e+00 -2.00000000e+00\n",
|
| 479 |
+
" -9.00000000e-01 -7.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 480 |
+
" -2.00000000e-01 1.30000000e+00 1.60000000e+00 1.80000000e+00\n",
|
| 481 |
+
" 1.70000000e+00 8.00000000e-01 -5.00000000e-01 2.00000000e-01\n",
|
| 482 |
+
" 1.00000000e-01 -4.00000000e-01 -3.00000000e-01 -5.00000000e-01\n",
|
| 483 |
+
" 1.00000000e-01 6.00000000e-01 1.00000000e-01 -4.00000000e-01\n",
|
| 484 |
+
" 2.00000000e-01 4.00000000e-01 1.10000000e+00 4.00000000e-01\n",
|
| 485 |
+
" -1.40000000e+00 -1.30000000e+00 -1.80000000e+00 -5.00000000e-01\n",
|
| 486 |
+
" -8.00000000e-01 1.00000000e-01 -2.00000000e-01 8.00000000e-01\n",
|
| 487 |
+
" 6.00000000e-01 -1.00000000e-01 7.00000000e-01 1.00000000e-01\n",
|
| 488 |
+
" 3.00000000e-01 6.00000000e-01 5.00000000e-01 7.00000000e-01\n",
|
| 489 |
+
" -2.77555756e-17 1.60000000e+00 2.30000000e+00 1.50000000e+00\n",
|
| 490 |
+
" 2.20000000e+00 7.00000000e-01 6.00000000e-01 4.00000000e-01\n",
|
| 491 |
+
" 6.00000000e-01 2.00000000e-01 1.00000000e-01 -7.00000000e-01\n",
|
| 492 |
+
" 4.00000000e-01 -1.50000000e+00 -1.90000000e+00 -9.00000000e-01\n",
|
| 493 |
+
" -1.50000000e+00 -7.00000000e-01 1.00000000e+00 1.80000000e+00\n",
|
| 494 |
+
" 2.70000000e+00 1.10000000e+00 6.00000000e-01 -2.20000000e+00\n",
|
| 495 |
+
" -8.00000000e-01 1.00000000e-01 8.00000000e-01 8.00000000e-01\n",
|
| 496 |
+
" -1.90000000e+00 -4.00000000e-01 6.00000000e-01 -5.00000000e-01\n",
|
| 497 |
+
" 3.00000000e-01 -4.00000000e-01 -3.00000000e-01 5.00000000e-01\n",
|
| 498 |
+
" 1.10000000e+00 8.00000000e-01 4.00000000e-01 -3.00000000e-01\n",
|
| 499 |
+
" -7.00000000e-01 -2.00000000e-01 -2.00000000e+00 -3.20000000e+00\n",
|
| 500 |
+
" -2.10000000e+00 -1.00000000e+00 7.00000000e-01 1.20000000e+00\n",
|
| 501 |
+
" 1.60000000e+00 -3.00000000e-01 -9.00000000e-01 -2.00000000e-01\n",
|
| 502 |
+
" 5.00000000e-01 -9.00000000e-01 -1.00000000e-01 1.00000000e+00\n",
|
| 503 |
+
" -1.60000000e+00 1.00000000e+00 -1.60000000e+00 -1.50000000e+00\n",
|
| 504 |
+
" 2.00000000e-01 9.00000000e-01 -1.00000000e-01 1.00000000e-01\n",
|
| 505 |
+
" -2.00000000e+00 -2.30000000e+00 -2.30000000e+00 -2.00000000e+00\n",
|
| 506 |
+
" 5.00000000e-01 1.60000000e+00 1.00000000e-01 2.77555756e-17\n",
|
| 507 |
+
" -1.10000000e+00 -4.00000000e-01 -6.00000000e-01 -2.30000000e+00\n",
|
| 508 |
+
" -2.00000000e+00 -7.00000000e-01 -1.50000000e+00 -9.00000000e-01\n",
|
| 509 |
+
" -2.00000000e-01 -8.00000000e-01 -4.00000000e-01 -4.00000000e-01\n",
|
| 510 |
+
" -2.50000000e+00 -1.00000000e+00 1.00000000e-01 8.00000000e-01\n",
|
| 511 |
+
" 1.40000000e+00 2.20000000e+00 5.00000000e-01 3.00000000e-01\n",
|
| 512 |
+
" -1.40000000e+00 -1.20000000e+00 -1.20000000e+00 -1.00000000e-01\n",
|
| 513 |
+
" -2.70000000e+00 -1.00000000e+00 3.00000000e-01 -2.00000000e-01\n",
|
| 514 |
+
" 1.70000000e+00 8.00000000e-01 -6.00000000e-01 -1.10000000e+00\n",
|
| 515 |
+
" -1.70000000e+00 7.00000000e-01 -7.00000000e-01 2.00000000e-01\n",
|
| 516 |
+
" 2.40000000e+00 1.10000000e+00 1.80000000e+00 4.00000000e-01\n",
|
| 517 |
+
" -1.70000000e+00 -2.00000000e-01 5.00000000e-01 -3.00000000e-01\n",
|
| 518 |
+
" 1.00000000e-01 1.30000000e+00 -3.00000000e-01 -9.00000000e-01\n",
|
| 519 |
+
" -3.00000000e-01 1.30000000e+00 1.40000000e+00 1.30000000e+00\n",
|
| 520 |
+
" 3.00000000e-01 2.00000000e-01 -8.00000000e-01 -2.00000000e-01\n",
|
| 521 |
+
" 1.70000000e+00 5.00000000e-01 6.00000000e-01 2.70000000e+00\n",
|
| 522 |
+
" -3.00000000e-01 -1.70000000e+00 -1.40000000e+00 -3.00000000e-01\n",
|
| 523 |
+
" -4.00000000e-01 -7.00000000e-01 -1.50000000e+00 -2.10000000e+00\n",
|
| 524 |
+
" -1.00000000e+00 3.80000000e+00 3.60000000e+00 1.80000000e+00\n",
|
| 525 |
+
" -2.20000000e+00 -9.00000000e-01 1.30000000e+00 3.00000000e-01\n",
|
| 526 |
+
" -2.77555756e-17 -1.40000000e+00 -7.00000000e-01 -6.00000000e-01\n",
|
| 527 |
+
" 2.77555756e-17 1.10000000e+00 -3.00000000e-01 -9.00000000e-01\n",
|
| 528 |
+
" 1.20000000e+00 2.00000000e-01 1.00000000e-01 2.30000000e+00\n",
|
| 529 |
+
" 2.40000000e+00 -1.30000000e+00 -1.20000000e+00 1.00000000e+00\n",
|
| 530 |
+
" -1.80000000e+00 3.00000000e-01 -1.60000000e+00 2.40000000e+00\n",
|
| 531 |
+
" -8.00000000e-01 2.00000000e-01 1.90000000e+00 -1.00000000e-01\n",
|
| 532 |
+
" 7.00000000e-01 -8.00000000e-01 -1.10000000e+00 1.90000000e+00\n",
|
| 533 |
+
" -2.00000000e-01 -7.00000000e-01 1.20000000e+00 6.00000000e-01\n",
|
| 534 |
+
" -1.10000000e+00 -2.30000000e+00 -8.00000000e-01 -2.77555756e-17\n",
|
| 535 |
+
" -5.00000000e-01 -6.00000000e-01 -2.00000000e-01 -2.00000000e-01\n",
|
| 536 |
+
" 7.00000000e-01 -5.00000000e-01 -1.30000000e+00 1.50000000e+00\n",
|
| 537 |
+
" -8.00000000e-01 -1.20000000e+00 -1.00000000e+00 5.00000000e-01\n",
|
| 538 |
+
" 1.70000000e+00 6.00000000e-01 -1.00000000e+00 -2.00000000e-01\n",
|
| 539 |
+
" -7.00000000e-01 -2.00000000e-01 1.00000000e+00 8.00000000e-01\n",
|
| 540 |
+
" -7.00000000e-01 -3.00000000e-01 -1.30000000e+00 -5.00000000e-01\n",
|
| 541 |
+
" 3.00000000e-01 4.00000000e-01 2.70000000e+00 -1.10000000e+00\n",
|
| 542 |
+
" 1.00000000e+00 -7.00000000e-01 -1.00000000e+00 2.70000000e+00\n",
|
| 543 |
+
" -1.00000000e-01 1.70000000e+00 -1.20000000e+00 1.40000000e+00\n",
|
| 544 |
+
" -8.00000000e-01 1.20000000e+00 1.10000000e+00 -9.00000000e-01\n",
|
| 545 |
+
" -1.20000000e+00 1.60000000e+00 -1.30000000e+00 -5.00000000e-01\n",
|
| 546 |
+
" -5.00000000e-01 3.00000000e-01 1.00000000e-01 -9.00000000e-01\n",
|
| 547 |
+
" 1.50000000e+00 1.20000000e+00 -8.00000000e-01 -4.00000000e-01\n",
|
| 548 |
+
" -2.10000000e+00 6.00000000e-01 -1.00000000e+00 -1.00000000e-01\n",
|
| 549 |
+
" -2.10000000e+00 -1.50000000e+00 3.30000000e+00 -3.00000000e-01\n",
|
| 550 |
+
" -2.00000000e-01 6.00000000e-01 -7.00000000e-01 -1.60000000e+00\n",
|
| 551 |
+
" 1.60000000e+00 2.77555756e-17 -2.77555756e-17 -1.90000000e+00\n",
|
| 552 |
+
" 1.50000000e+00 2.10000000e+00 -1.30000000e+00 -1.60000000e+00\n",
|
| 553 |
+
" 1.00000000e-01 2.40000000e+00 -3.00000000e-01 -9.00000000e-01\n",
|
| 554 |
+
" -4.00000000e-01 1.70000000e+00 2.00000000e-01 1.60000000e+00\n",
|
| 555 |
+
" 1.60000000e+00 -4.00000000e-01 2.77555756e-17 -9.00000000e-01\n",
|
| 556 |
+
" 3.00000000e-01 -3.00000000e-01 -1.30000000e+00 -5.00000000e-01\n",
|
| 557 |
+
" -2.00000000e-01 1.50000000e+00 -8.00000000e-01 -2.60000000e+00\n",
|
| 558 |
+
" -4.00000000e-01 -2.00000000e-01 -1.60000000e+00 -5.00000000e-01\n",
|
| 559 |
+
" 2.77555756e-17 -1.20000000e+00 -5.00000000e-01 1.10000000e+00\n",
|
| 560 |
+
" 2.77555756e-17 1.00000000e-01 1.40000000e+00 -3.00000000e-01\n",
|
| 561 |
+
" -2.77555756e-17 -1.00000000e-01 -1.20000000e+00 3.00000000e-01\n",
|
| 562 |
+
" 8.00000000e-01 4.00000000e-01 -5.00000000e-01 -9.00000000e-01\n",
|
| 563 |
+
" -7.00000000e-01 -1.80000000e+00 -6.00000000e-01 1.30000000e+00\n",
|
| 564 |
+
" 6.00000000e-01 -4.00000000e-01 -1.10000000e+00 6.00000000e-01\n",
|
| 565 |
+
" 1.00000000e-01 -1.00000000e-01 -4.00000000e-01 4.00000000e-01\n",
|
| 566 |
+
" -7.00000000e-01 1.40000000e+00 1.70000000e+00 -1.20000000e+00\n",
|
| 567 |
+
" -1.90000000e+00 -2.30000000e+00 2.00000000e-01 1.40000000e+00\n",
|
| 568 |
+
" 1.50000000e+00 2.00000000e-01 2.77555756e-17 -1.00000000e+00\n",
|
| 569 |
+
" 1.00000000e+00 -5.00000000e-01 -2.00000000e-01 -3.00000000e-01\n",
|
| 570 |
+
" 1.10000000e+00 8.00000000e-01 -1.10000000e+00 -2.00000000e-01\n",
|
| 571 |
+
" -1.10000000e+00 3.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
| 572 |
+
" -3.00000000e-01 -1.00000000e-01 1.00000000e-01 4.00000000e-01\n",
|
| 573 |
+
" 3.00000000e-01 1.00000000e-01 2.00000000e-01 5.00000000e-01\n",
|
| 574 |
+
" 6.00000000e-01 4.00000000e-01 4.00000000e-01 3.00000000e-01\n",
|
| 575 |
+
" -1.00000000e-01 -2.00000000e-01 2.00000000e-01 2.00000000e-01\n",
|
| 576 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 4.00000000e-01\n",
|
| 577 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 578 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01\n",
|
| 579 |
+
" 1.00000000e-01 1.00000000e-01 1.00000000e-01 1.00000000e-01]\n"
|
| 580 |
+
]
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"name": "stderr",
|
| 584 |
+
"output_type": "stream",
|
| 585 |
+
"text": [
|
| 586 |
+
"100%|██████████| 5/5 [00:01<00:00, 4.33it/s]"
|
| 587 |
+
]
|
| 588 |
+
},
|
| 589 |
+
{
|
| 590 |
+
"name": "stdout",
|
| 591 |
+
"output_type": "stream",
|
| 592 |
+
"text": [
|
| 593 |
+
"Updated Weights after epoch 4 with [ 2.00000000e-01 6.00000000e-01 1.10000000e+00 1.40000000e+00\n",
|
| 594 |
+
" -2.00000000e-01 -9.00000000e-01 -1.80000000e+00 -1.10000000e+00\n",
|
| 595 |
+
" 1.00000000e-01 1.00000000e-01 1.20000000e+00 1.20000000e+00\n",
|
| 596 |
+
" 8.00000000e-01 1.00000000e+00 5.00000000e-01 -2.77555756e-17\n",
|
| 597 |
+
" -1.00000000e+00 2.00000000e-01 -4.00000000e-01 -2.00000000e-01\n",
|
| 598 |
+
" -8.00000000e-01 -3.00000000e-01 -1.50000000e+00 -1.10000000e+00\n",
|
| 599 |
+
" -1.00000000e+00 1.10000000e+00 5.00000000e-01 2.30000000e+00\n",
|
| 600 |
+
" 1.30000000e+00 1.30000000e+00 -2.77555756e-17 7.00000000e-01\n",
|
| 601 |
+
" -4.00000000e-01 1.00000000e-01 1.40000000e+00 1.70000000e+00\n",
|
| 602 |
+
" 9.00000000e-01 7.00000000e-01 -1.00000000e-01 -3.00000000e-01\n",
|
| 603 |
+
" -2.77555756e-17 -1.00000000e-01 6.00000000e-01 1.30000000e+00\n",
|
| 604 |
+
" 1.00000000e+00 5.00000000e-01 -3.00000000e-01 -5.00000000e-01\n",
|
| 605 |
+
" -2.10000000e+00 -3.00000000e+00 -2.00000000e-01 -6.00000000e-01\n",
|
| 606 |
+
" 1.00000000e-01 2.00000000e-01 9.00000000e-01 2.77555756e-17\n",
|
| 607 |
+
" -4.00000000e-01 -1.00000000e+00 -1.80000000e+00 -4.00000000e-01\n",
|
| 608 |
+
" -5.00000000e-01 -1.00000000e+00 -1.20000000e+00 -2.60000000e+00\n",
|
| 609 |
+
" -1.10000000e+00 -9.00000000e-01 -1.00000000e-01 2.77555756e-17\n",
|
| 610 |
+
" 1.10000000e+00 2.20000000e+00 1.20000000e+00 5.00000000e-01\n",
|
| 611 |
+
" 5.00000000e-01 1.00000000e-01 1.60000000e+00 1.00000000e-01\n",
|
| 612 |
+
" -1.80000000e+00 1.10000000e+00 9.00000000e-01 1.30000000e+00\n",
|
| 613 |
+
" 1.30000000e+00 -1.00000000e-01 7.00000000e-01 1.80000000e+00\n",
|
| 614 |
+
" -4.00000000e-01 -1.50000000e+00 -2.00000000e-01 2.77555756e-17\n",
|
| 615 |
+
" -1.00000000e+00 -4.00000000e-01 2.10000000e+00 4.00000000e-01\n",
|
| 616 |
+
" -8.00000000e-01 -6.00000000e-01 -2.80000000e+00 -2.50000000e+00\n",
|
| 617 |
+
" -1.30000000e+00 -1.00000000e+00 3.00000000e-01 2.77555756e-17\n",
|
| 618 |
+
" -8.00000000e-01 9.00000000e-01 1.20000000e+00 1.30000000e+00\n",
|
| 619 |
+
" 1.40000000e+00 5.00000000e-01 -7.00000000e-01 1.00000000e-01\n",
|
| 620 |
+
" 2.77555756e-17 -7.00000000e-01 -4.00000000e-01 -5.00000000e-01\n",
|
| 621 |
+
" 4.00000000e-01 7.00000000e-01 2.00000000e-01 -4.00000000e-01\n",
|
| 622 |
+
" 3.00000000e-01 6.00000000e-01 1.40000000e+00 5.00000000e-01\n",
|
| 623 |
+
" -1.70000000e+00 -1.50000000e+00 -2.10000000e+00 -8.00000000e-01\n",
|
| 624 |
+
" -9.00000000e-01 1.00000000e-01 -6.00000000e-01 6.00000000e-01\n",
|
| 625 |
+
" 3.00000000e-01 -8.00000000e-01 5.00000000e-01 -3.00000000e-01\n",
|
| 626 |
+
" -2.00000000e-01 3.00000000e-01 -2.77555756e-17 2.00000000e-01\n",
|
| 627 |
+
" -7.00000000e-01 1.30000000e+00 2.20000000e+00 1.20000000e+00\n",
|
| 628 |
+
" 2.00000000e+00 1.00000000e-01 -1.00000000e-01 -4.00000000e-01\n",
|
| 629 |
+
" 1.00000000e-01 -2.00000000e-01 -4.00000000e-01 -1.20000000e+00\n",
|
| 630 |
+
" 3.00000000e-01 -1.90000000e+00 -2.20000000e+00 -1.00000000e+00\n",
|
| 631 |
+
" -2.00000000e+00 -1.20000000e+00 8.00000000e-01 1.70000000e+00\n",
|
| 632 |
+
" 2.70000000e+00 7.00000000e-01 2.00000000e-01 -3.30000000e+00\n",
|
| 633 |
+
" -1.30000000e+00 -1.00000000e-01 6.00000000e-01 7.00000000e-01\n",
|
| 634 |
+
" -2.20000000e+00 -2.00000000e-01 8.00000000e-01 -6.00000000e-01\n",
|
| 635 |
+
" 4.00000000e-01 -6.00000000e-01 -4.00000000e-01 6.00000000e-01\n",
|
| 636 |
+
" 1.10000000e+00 7.00000000e-01 3.00000000e-01 -5.00000000e-01\n",
|
| 637 |
+
" -1.10000000e+00 -5.00000000e-01 -2.60000000e+00 -3.80000000e+00\n",
|
| 638 |
+
" -2.50000000e+00 -1.10000000e+00 1.00000000e+00 1.30000000e+00\n",
|
| 639 |
+
" 1.70000000e+00 -6.00000000e-01 -1.10000000e+00 -2.00000000e-01\n",
|
| 640 |
+
" 7.00000000e-01 -1.20000000e+00 2.77555756e-17 1.20000000e+00\n",
|
| 641 |
+
" -2.00000000e+00 1.20000000e+00 -2.00000000e+00 -1.90000000e+00\n",
|
| 642 |
+
" 3.00000000e-01 1.20000000e+00 2.77555756e-17 3.00000000e-01\n",
|
| 643 |
+
" -2.30000000e+00 -2.60000000e+00 -2.60000000e+00 -2.30000000e+00\n",
|
| 644 |
+
" 7.00000000e-01 2.40000000e+00 6.00000000e-01 6.00000000e-01\n",
|
| 645 |
+
" -9.00000000e-01 1.00000000e-01 -3.00000000e-01 -2.40000000e+00\n",
|
| 646 |
+
" -1.80000000e+00 -2.00000000e-01 -1.20000000e+00 -3.00000000e-01\n",
|
| 647 |
+
" 5.00000000e-01 -8.00000000e-01 -3.00000000e-01 -4.00000000e-01\n",
|
| 648 |
+
" -3.10000000e+00 -1.20000000e+00 1.00000000e-01 8.00000000e-01\n",
|
| 649 |
+
" 1.50000000e+00 2.60000000e+00 6.00000000e-01 2.00000000e-01\n",
|
| 650 |
+
" -1.60000000e+00 -1.10000000e+00 -1.20000000e+00 1.00000000e-01\n",
|
| 651 |
+
" -3.30000000e+00 -1.30000000e+00 1.00000000e-01 -5.00000000e-01\n",
|
| 652 |
+
" 2.00000000e+00 7.00000000e-01 -1.00000000e+00 -1.90000000e+00\n",
|
| 653 |
+
" -2.40000000e+00 5.00000000e-01 -1.10000000e+00 -1.00000000e-01\n",
|
| 654 |
+
" 2.50000000e+00 1.30000000e+00 2.20000000e+00 3.00000000e-01\n",
|
| 655 |
+
" -2.20000000e+00 -2.00000000e-01 9.00000000e-01 -1.00000000e-01\n",
|
| 656 |
+
" 3.00000000e-01 1.50000000e+00 -2.00000000e-01 -1.40000000e+00\n",
|
| 657 |
+
" -6.00000000e-01 8.00000000e-01 1.10000000e+00 1.00000000e+00\n",
|
| 658 |
+
" -4.00000000e-01 -4.00000000e-01 -1.40000000e+00 -3.00000000e-01\n",
|
| 659 |
+
" 1.50000000e+00 2.00000000e-01 6.00000000e-01 3.10000000e+00\n",
|
| 660 |
+
" -7.00000000e-01 -2.30000000e+00 -1.60000000e+00 -2.00000000e-01\n",
|
| 661 |
+
" -3.00000000e-01 -2.00000000e-01 -1.20000000e+00 -1.90000000e+00\n",
|
| 662 |
+
" -6.00000000e-01 4.50000000e+00 3.90000000e+00 1.90000000e+00\n",
|
| 663 |
+
" -2.70000000e+00 -1.40000000e+00 1.00000000e+00 -2.00000000e-01\n",
|
| 664 |
+
" -3.00000000e-01 -1.60000000e+00 -8.00000000e-01 -9.00000000e-01\n",
|
| 665 |
+
" -1.00000000e-01 1.20000000e+00 -2.00000000e-01 -1.10000000e+00\n",
|
| 666 |
+
" 1.30000000e+00 -2.00000000e-01 -5.00000000e-01 2.40000000e+00\n",
|
| 667 |
+
" 2.70000000e+00 -1.80000000e+00 -1.40000000e+00 9.00000000e-01\n",
|
| 668 |
+
" -2.00000000e+00 4.00000000e-01 -1.80000000e+00 2.70000000e+00\n",
|
| 669 |
+
" -7.00000000e-01 7.00000000e-01 2.70000000e+00 -2.00000000e-01\n",
|
| 670 |
+
" 8.00000000e-01 -9.00000000e-01 -1.40000000e+00 2.10000000e+00\n",
|
| 671 |
+
" -5.00000000e-01 -1.20000000e+00 1.10000000e+00 5.00000000e-01\n",
|
| 672 |
+
" -1.10000000e+00 -1.90000000e+00 -6.00000000e-01 -1.00000000e-01\n",
|
| 673 |
+
" -8.00000000e-01 -7.00000000e-01 -3.00000000e-01 -2.00000000e-01\n",
|
| 674 |
+
" 8.00000000e-01 -4.00000000e-01 -1.30000000e+00 2.30000000e+00\n",
|
| 675 |
+
" -5.00000000e-01 -1.00000000e+00 -9.00000000e-01 7.00000000e-01\n",
|
| 676 |
+
" 2.00000000e+00 2.00000000e-01 -1.40000000e+00 -3.00000000e-01\n",
|
| 677 |
+
" -5.00000000e-01 -4.00000000e-01 5.00000000e-01 6.00000000e-01\n",
|
| 678 |
+
" -1.00000000e+00 -3.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
| 679 |
+
" 4.00000000e-01 -2.77555756e-17 2.80000000e+00 -1.50000000e+00\n",
|
| 680 |
+
" 7.00000000e-01 -9.00000000e-01 -9.00000000e-01 3.00000000e+00\n",
|
| 681 |
+
" -4.00000000e-01 1.80000000e+00 -1.60000000e+00 1.40000000e+00\n",
|
| 682 |
+
" -1.20000000e+00 9.00000000e-01 1.20000000e+00 -1.70000000e+00\n",
|
| 683 |
+
" -1.60000000e+00 1.50000000e+00 -1.50000000e+00 -3.00000000e-01\n",
|
| 684 |
+
" -6.00000000e-01 8.00000000e-01 1.00000000e+00 -7.00000000e-01\n",
|
| 685 |
+
" 1.80000000e+00 1.10000000e+00 -1.40000000e+00 -2.00000000e-01\n",
|
| 686 |
+
" -2.10000000e+00 6.00000000e-01 -1.10000000e+00 -3.00000000e-01\n",
|
| 687 |
+
" -2.00000000e+00 -1.60000000e+00 3.60000000e+00 -6.00000000e-01\n",
|
| 688 |
+
" -8.00000000e-01 4.00000000e-01 -9.00000000e-01 -1.80000000e+00\n",
|
| 689 |
+
" 2.10000000e+00 3.00000000e-01 5.00000000e-01 -1.90000000e+00\n",
|
| 690 |
+
" 1.50000000e+00 2.30000000e+00 -1.60000000e+00 -1.90000000e+00\n",
|
| 691 |
+
" 3.00000000e-01 2.50000000e+00 -5.00000000e-01 -1.40000000e+00\n",
|
| 692 |
+
" -1.00000000e+00 1.60000000e+00 -2.00000000e-01 1.40000000e+00\n",
|
| 693 |
+
" 1.30000000e+00 -1.10000000e+00 -2.00000000e-01 -1.10000000e+00\n",
|
| 694 |
+
" 4.00000000e-01 -3.00000000e-01 -1.30000000e+00 -6.00000000e-01\n",
|
| 695 |
+
" -4.00000000e-01 2.00000000e+00 -6.00000000e-01 -2.40000000e+00\n",
|
| 696 |
+
" 1.00000000e-01 5.00000000e-01 -1.50000000e+00 -1.00000000e-01\n",
|
| 697 |
+
" 5.00000000e-01 -1.00000000e+00 -4.00000000e-01 1.50000000e+00\n",
|
| 698 |
+
" -1.00000000e-01 -1.00000000e-01 1.40000000e+00 -6.00000000e-01\n",
|
| 699 |
+
" -3.00000000e-01 -1.00000000e-01 -1.50000000e+00 2.77555756e-17\n",
|
| 700 |
+
" 4.00000000e-01 1.00000000e-01 -9.00000000e-01 -1.10000000e+00\n",
|
| 701 |
+
" -8.00000000e-01 -1.70000000e+00 -3.00000000e-01 1.90000000e+00\n",
|
| 702 |
+
" 6.00000000e-01 -4.00000000e-01 -1.10000000e+00 9.00000000e-01\n",
|
| 703 |
+
" -2.00000000e-01 -7.00000000e-01 -1.00000000e+00 3.00000000e-01\n",
|
| 704 |
+
" -8.00000000e-01 1.50000000e+00 2.10000000e+00 -1.10000000e+00\n",
|
| 705 |
+
" -1.90000000e+00 -2.40000000e+00 4.00000000e-01 1.50000000e+00\n",
|
| 706 |
+
" 1.40000000e+00 -3.00000000e-01 -5.00000000e-01 -1.50000000e+00\n",
|
| 707 |
+
" 1.00000000e+00 -4.00000000e-01 -2.77555756e-17 -1.00000000e-01\n",
|
| 708 |
+
" 1.20000000e+00 9.00000000e-01 -1.40000000e+00 -4.00000000e-01\n",
|
| 709 |
+
" -1.40000000e+00 4.00000000e-01 3.00000000e-01 2.00000000e-01\n",
|
| 710 |
+
" -3.00000000e-01 -3.00000000e-01 -1.00000000e-01 2.00000000e-01\n",
|
| 711 |
+
" 1.00000000e-01 -2.00000000e-01 -2.77555756e-17 4.00000000e-01\n",
|
| 712 |
+
" 5.00000000e-01 2.00000000e-01 2.00000000e-01 1.00000000e-01\n",
|
| 713 |
+
" -4.00000000e-01 -5.00000000e-01 -2.77555756e-17 -2.77555756e-17\n",
|
| 714 |
+
" -1.00000000e-01 -1.00000000e-01 -1.00000000e-01 3.00000000e-01\n",
|
| 715 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
| 716 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17\n",
|
| 717 |
+
" -2.77555756e-17 -2.77555756e-17 -2.77555756e-17 -2.77555756e-17]\n",
|
| 718 |
+
"Training Completed\n",
|
| 719 |
+
"Accuracy: 49.99%\n"
|
| 720 |
+
]
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"name": "stderr",
|
| 724 |
+
"output_type": "stream",
|
| 725 |
+
"text": [
|
| 726 |
+
"\n"
|
| 727 |
+
]
|
| 728 |
+
}
|
| 729 |
+
],
|
| 730 |
+
"source": [
|
| 731 |
+
"# Load the IMDB dataset\n",
|
| 732 |
+
"top_words = 5000\n",
|
| 733 |
+
"(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)\n",
|
| 734 |
+
"\n",
|
| 735 |
+
"# Truncate and pad input sequences\n",
|
| 736 |
+
"max_review_length = 500\n",
|
| 737 |
+
"X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)\n",
|
| 738 |
+
"X_test = sequence.pad_sequences(X_test, maxlen=max_review_length)\n",
|
| 739 |
+
"\n",
|
| 740 |
+
"# Convert data to binary (0/1) for perceptron\n",
|
| 741 |
+
"X_train_bin = np.where(X_train > 0, 1, 0)\n",
|
| 742 |
+
"X_test_bin = np.where(X_test > 0, 1, 0)\n",
|
| 743 |
+
"\n",
|
| 744 |
+
"# Initialize and train the Perceptron\n",
|
| 745 |
+
"bp = BackPropogation(learning_rate=0.1, epochs=5)\n",
|
| 746 |
+
"bp.fit(X_train_bin, y_train)\n",
|
| 747 |
+
"\n",
|
| 748 |
+
"# Evaluate on test data\n",
|
| 749 |
+
"predictions = bp.predict(X_test_bin)\n",
|
| 750 |
+
"accuracy = np.mean(predictions == y_test)\n",
|
| 751 |
+
"print(\"Accuracy: {:.2f}%\".format(accuracy * 100))"
|
| 752 |
+
]
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"cell_type": "code",
|
| 756 |
+
"execution_count": 3,
|
| 757 |
+
"metadata": {},
|
| 758 |
+
"outputs": [
|
| 759 |
+
{
|
| 760 |
+
"name": "stdout",
|
| 761 |
+
"output_type": "stream",
|
| 762 |
+
"text": [
|
| 763 |
+
"Confusion Matrix:\n",
|
| 764 |
+
"[[12390 110]\n",
|
| 765 |
+
" [12392 108]]\n",
|
| 766 |
+
"\n",
|
| 767 |
+
"Classification Report:\n",
|
| 768 |
+
" precision recall f1-score support\n",
|
| 769 |
+
"\n",
|
| 770 |
+
" 0 0.50 0.99 0.66 12500\n",
|
| 771 |
+
" 1 0.50 0.01 0.02 12500\n",
|
| 772 |
+
"\n",
|
| 773 |
+
" accuracy 0.50 25000\n",
|
| 774 |
+
" macro avg 0.50 0.50 0.34 25000\n",
|
| 775 |
+
"weighted avg 0.50 0.50 0.34 25000\n",
|
| 776 |
+
"\n"
|
| 777 |
+
]
|
| 778 |
+
}
|
| 779 |
+
],
|
| 780 |
+
"source": [
|
| 781 |
+
"# Calculate confusion matrix\n",
|
| 782 |
+
"cm = confusion_matrix(y_test, predictions)\n",
|
| 783 |
+
"\n",
|
| 784 |
+
"# Generate classification report\n",
|
| 785 |
+
"report = classification_report(y_test, predictions)\n",
|
| 786 |
+
"\n",
|
| 787 |
+
"# Display confusion matrix and classification report\n",
|
| 788 |
+
"print(\"Confusion Matrix:\")\n",
|
| 789 |
+
"print(cm)\n",
|
| 790 |
+
"print(\"\\nClassification Report:\")\n",
|
| 791 |
+
"print(report)"
|
| 792 |
+
]
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"cell_type": "code",
|
| 796 |
+
"execution_count": 4,
|
| 797 |
+
"metadata": {},
|
| 798 |
+
"outputs": [],
|
| 799 |
+
"source": [
|
| 800 |
+
"# Save the instance of the Perceptron class\n",
|
| 801 |
+
"with open('backprop_movie_model.pkl', 'wb') as file:\n",
|
| 802 |
+
" pickle.dump(bp, file)"
|
| 803 |
+
]
|
| 804 |
+
},
|
| 805 |
+
{
|
| 806 |
+
"cell_type": "code",
|
| 807 |
+
"execution_count": 5,
|
| 808 |
+
"metadata": {},
|
| 809 |
+
"outputs": [],
|
| 810 |
+
"source": [
|
| 811 |
+
"def predict_sentiment_backprop(review, backprop_model, max_review_length):\n",
|
| 812 |
+
" word_index = imdb.get_word_index()\n",
|
| 813 |
+
" review = review.lower().split()\n",
|
| 814 |
+
" review = [word_index[word] if (word in word_index and word_index[word] < top_words) else 0 for word in review]\n",
|
| 815 |
+
" review_bin = np.where(np.array(review) > 0, 1, 0)\n",
|
| 816 |
+
" # Padding or truncating the review to match the perceptron's input size\n",
|
| 817 |
+
" review_bin_padded = np.pad(review_bin, (0, max_review_length - len(review_bin)), 'constant')\n",
|
| 818 |
+
" prediction = backprop_model.predict([review_bin_padded])\n",
|
| 819 |
+
" if prediction[0] == 1:\n",
|
| 820 |
+
" return \"Positive\"\n",
|
| 821 |
+
" else:\n",
|
| 822 |
+
" return \"Negative\"\n"
|
| 823 |
+
]
|
| 824 |
+
},
|
| 825 |
+
{
|
| 826 |
+
"cell_type": "code",
|
| 827 |
+
"execution_count": 7,
|
| 828 |
+
"metadata": {},
|
| 829 |
+
"outputs": [
|
| 830 |
+
{
|
| 831 |
+
"name": "stdout",
|
| 832 |
+
"output_type": "stream",
|
| 833 |
+
"text": [
|
| 834 |
+
"Predicted Sentiment: Negative\n"
|
| 835 |
+
]
|
| 836 |
+
}
|
| 837 |
+
],
|
| 838 |
+
"source": [
|
| 839 |
+
"# Example usage after training the perceptron\n",
|
| 840 |
+
"example_review = \"This movie was fantastic! I loved every bit of it.\"\n",
|
| 841 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
| 842 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 843 |
+
]
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"cell_type": "code",
|
| 847 |
+
"execution_count": 8,
|
| 848 |
+
"metadata": {},
|
| 849 |
+
"outputs": [
|
| 850 |
+
{
|
| 851 |
+
"name": "stdout",
|
| 852 |
+
"output_type": "stream",
|
| 853 |
+
"text": [
|
| 854 |
+
"Predicted Sentiment: Positive\n"
|
| 855 |
+
]
|
| 856 |
+
}
|
| 857 |
+
],
|
| 858 |
+
"source": [
|
| 859 |
+
"# Example usage after training the perceptron\n",
|
| 860 |
+
"example_review = \"This movie was bad!.\"\n",
|
| 861 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
| 862 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 863 |
+
]
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"cell_type": "code",
|
| 867 |
+
"execution_count": 9,
|
| 868 |
+
"metadata": {},
|
| 869 |
+
"outputs": [
|
| 870 |
+
{
|
| 871 |
+
"name": "stdout",
|
| 872 |
+
"output_type": "stream",
|
| 873 |
+
"text": [
|
| 874 |
+
"Predicted Sentiment: Positive\n"
|
| 875 |
+
]
|
| 876 |
+
}
|
| 877 |
+
],
|
| 878 |
+
"source": [
|
| 879 |
+
"example_review = \"This movie was terrible. The acting was awful, and the plot was confusing.\"\n",
|
| 880 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
| 881 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 882 |
+
]
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"cell_type": "code",
|
| 886 |
+
"execution_count": 10,
|
| 887 |
+
"metadata": {},
|
| 888 |
+
"outputs": [
|
| 889 |
+
{
|
| 890 |
+
"name": "stdout",
|
| 891 |
+
"output_type": "stream",
|
| 892 |
+
"text": [
|
| 893 |
+
"Predicted Sentiment: Positive\n"
|
| 894 |
+
]
|
| 895 |
+
}
|
| 896 |
+
],
|
| 897 |
+
"source": [
|
| 898 |
+
"example_review = \"This movie was fantastic and great\"\n",
|
| 899 |
+
"sentiment = predict_sentiment_backprop(example_review, bp, max_review_length)\n",
|
| 900 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 901 |
+
]
|
| 902 |
+
},
|
| 903 |
+
{
|
| 904 |
+
"cell_type": "code",
|
| 905 |
+
"execution_count": null,
|
| 906 |
+
"metadata": {},
|
| 907 |
+
"outputs": [],
|
| 908 |
+
"source": []
|
| 909 |
+
}
|
| 910 |
+
],
|
| 911 |
+
"metadata": {
|
| 912 |
+
"kernelspec": {
|
| 913 |
+
"display_name": "DLENV",
|
| 914 |
+
"language": "python",
|
| 915 |
+
"name": "python3"
|
| 916 |
+
},
|
| 917 |
+
"language_info": {
|
| 918 |
+
"codemirror_mode": {
|
| 919 |
+
"name": "ipython",
|
| 920 |
+
"version": 3
|
| 921 |
+
},
|
| 922 |
+
"file_extension": ".py",
|
| 923 |
+
"mimetype": "text/x-python",
|
| 924 |
+
"name": "python",
|
| 925 |
+
"nbconvert_exporter": "python",
|
| 926 |
+
"pygments_lexer": "ipython3",
|
| 927 |
+
"version": "3.10.11"
|
| 928 |
+
}
|
| 929 |
+
},
|
| 930 |
+
"nbformat": 4,
|
| 931 |
+
"nbformat_minor": 2
|
| 932 |
+
}
|
perceptron_movie_model.ipynb
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"#### Movie Sentiment Analysis Model using Perceptron"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"from tensorflow.keras.datasets import imdb\n",
|
| 17 |
+
"import numpy as np\n",
|
| 18 |
+
"from tqdm import tqdm\n",
|
| 19 |
+
"from Perceptron import Perceptron\n",
|
| 20 |
+
"from tensorflow.keras.preprocessing import sequence\n",
|
| 21 |
+
"from sklearn.metrics import confusion_matrix, classification_report\n",
|
| 22 |
+
"import pickle"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 2,
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"name": "stderr",
|
| 32 |
+
"output_type": "stream",
|
| 33 |
+
"text": [
|
| 34 |
+
"100%|██████████| 5/5 [00:00<00:00, 20.08it/s]"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"name": "stdout",
|
| 39 |
+
"output_type": "stream",
|
| 40 |
+
"text": [
|
| 41 |
+
"Training Completed\n",
|
| 42 |
+
"Accuracy: 50.00%\n"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"name": "stderr",
|
| 47 |
+
"output_type": "stream",
|
| 48 |
+
"text": [
|
| 49 |
+
"\n"
|
| 50 |
+
]
|
| 51 |
+
}
|
| 52 |
+
],
|
| 53 |
+
"source": [
|
| 54 |
+
"# Load the IMDB dataset\n",
|
| 55 |
+
"top_words = 5000\n",
|
| 56 |
+
"(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"# Truncate and pad input sequences\n",
|
| 59 |
+
"max_review_length = 500\n",
|
| 60 |
+
"X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)\n",
|
| 61 |
+
"X_test = sequence.pad_sequences(X_test, maxlen=max_review_length)\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"# Convert data to binary (0/1) for perceptron\n",
|
| 64 |
+
"X_train_bin = np.where(X_train > 0, 1, 0)\n",
|
| 65 |
+
"X_test_bin = np.where(X_test > 0, 1, 0)\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"# Initialize and train the Perceptron\n",
|
| 68 |
+
"perceptron = Perceptron(learning_rate=0.1, epochs=5)\n",
|
| 69 |
+
"perceptron.fit(X_train_bin, y_train)\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"# Evaluate on test data\n",
|
| 72 |
+
"predictions = perceptron.predict(X_test_bin)\n",
|
| 73 |
+
"accuracy = np.mean(predictions == y_test)\n",
|
| 74 |
+
"print(\"Accuracy: {:.2f}%\".format(accuracy * 100))"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 3,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [
|
| 82 |
+
{
|
| 83 |
+
"name": "stdout",
|
| 84 |
+
"output_type": "stream",
|
| 85 |
+
"text": [
|
| 86 |
+
"Confusion Matrix:\n",
|
| 87 |
+
"[[ 0 12500]\n",
|
| 88 |
+
" [ 0 12500]]\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"Classification Report:\n",
|
| 91 |
+
" precision recall f1-score support\n",
|
| 92 |
+
"\n",
|
| 93 |
+
" 0 0.00 0.00 0.00 12500\n",
|
| 94 |
+
" 1 0.50 1.00 0.67 12500\n",
|
| 95 |
+
"\n",
|
| 96 |
+
" accuracy 0.50 25000\n",
|
| 97 |
+
" macro avg 0.25 0.50 0.33 25000\n",
|
| 98 |
+
"weighted avg 0.25 0.50 0.33 25000\n",
|
| 99 |
+
"\n"
|
| 100 |
+
]
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"name": "stderr",
|
| 104 |
+
"output_type": "stream",
|
| 105 |
+
"text": [
|
| 106 |
+
"d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 107 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 108 |
+
"d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 109 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
| 110 |
+
"d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
| 111 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n"
|
| 112 |
+
]
|
| 113 |
+
}
|
| 114 |
+
],
|
| 115 |
+
"source": [
|
| 116 |
+
"# Calculate confusion matrix\n",
|
| 117 |
+
"cm = confusion_matrix(y_test, predictions)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"# Generate classification report\n",
|
| 120 |
+
"report = classification_report(y_test, predictions)\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"# Display confusion matrix and classification report\n",
|
| 123 |
+
"print(\"Confusion Matrix:\")\n",
|
| 124 |
+
"print(cm)\n",
|
| 125 |
+
"print(\"\\nClassification Report:\")\n",
|
| 126 |
+
"print(report)"
|
| 127 |
+
]
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"cell_type": "code",
|
| 131 |
+
"execution_count": 4,
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [],
|
| 134 |
+
"source": [
|
| 135 |
+
"# Save the instance of the Perceptron class\n",
|
| 136 |
+
"with open('perceptron_movie_model.pkl', 'wb') as file:\n",
|
| 137 |
+
" pickle.dump(perceptron, file)"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "code",
|
| 142 |
+
"execution_count": 5,
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"outputs": [],
|
| 145 |
+
"source": [
|
| 146 |
+
"def predict_sentiment_perceptron(review, perceptron_model, max_review_length):\n",
|
| 147 |
+
" word_index = imdb.get_word_index()\n",
|
| 148 |
+
" review = review.lower().split()\n",
|
| 149 |
+
" review = [word_index[word] if (word in word_index and word_index[word] < top_words) else 0 for word in review]\n",
|
| 150 |
+
" review_bin = np.where(np.array(review) > 0, 1, 0)\n",
|
| 151 |
+
" # Padding or truncating the review to match the perceptron's input size\n",
|
| 152 |
+
" review_bin_padded = np.pad(review_bin, (0, max_review_length - len(review_bin)), 'constant')\n",
|
| 153 |
+
" prediction = perceptron_model.predict([review_bin_padded])\n",
|
| 154 |
+
" if prediction[0] == 1:\n",
|
| 155 |
+
" return \"Positive\"\n",
|
| 156 |
+
" else:\n",
|
| 157 |
+
" return \"Negative\"\n"
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"execution_count": 6,
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [
|
| 165 |
+
{
|
| 166 |
+
"name": "stdout",
|
| 167 |
+
"output_type": "stream",
|
| 168 |
+
"text": [
|
| 169 |
+
"Predicted Sentiment: Positive\n"
|
| 170 |
+
]
|
| 171 |
+
}
|
| 172 |
+
],
|
| 173 |
+
"source": [
|
| 174 |
+
"# Example usage after training the perceptron\n",
|
| 175 |
+
"example_review = \"This movie was fantastic! I loved every bit of it.\"\n",
|
| 176 |
+
"sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
|
| 177 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"cell_type": "code",
|
| 182 |
+
"execution_count": 7,
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [
|
| 185 |
+
{
|
| 186 |
+
"name": "stdout",
|
| 187 |
+
"output_type": "stream",
|
| 188 |
+
"text": [
|
| 189 |
+
"Predicted Sentiment: Positive\n"
|
| 190 |
+
]
|
| 191 |
+
}
|
| 192 |
+
],
|
| 193 |
+
"source": [
|
| 194 |
+
"# Example usage after training the perceptron\n",
|
| 195 |
+
"example_review = \"This movie was bad!.\"\n",
|
| 196 |
+
"sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
|
| 197 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": 8,
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [
|
| 205 |
+
{
|
| 206 |
+
"name": "stdout",
|
| 207 |
+
"output_type": "stream",
|
| 208 |
+
"text": [
|
| 209 |
+
"Predicted Sentiment: Positive\n"
|
| 210 |
+
]
|
| 211 |
+
}
|
| 212 |
+
],
|
| 213 |
+
"source": [
|
| 214 |
+
"example_review = \"This movie was terrible. The acting was awful, and the plot was confusing.\"\n",
|
| 215 |
+
"sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
|
| 216 |
+
"print(\"Predicted Sentiment:\", sentiment)"
|
| 217 |
+
]
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"cell_type": "code",
|
| 221 |
+
"execution_count": null,
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": []
|
| 225 |
+
}
|
| 226 |
+
],
|
| 227 |
+
"metadata": {
|
| 228 |
+
"kernelspec": {
|
| 229 |
+
"display_name": "DLENV",
|
| 230 |
+
"language": "python",
|
| 231 |
+
"name": "python3"
|
| 232 |
+
},
|
| 233 |
+
"language_info": {
|
| 234 |
+
"codemirror_mode": {
|
| 235 |
+
"name": "ipython",
|
| 236 |
+
"version": 3
|
| 237 |
+
},
|
| 238 |
+
"file_extension": ".py",
|
| 239 |
+
"mimetype": "text/x-python",
|
| 240 |
+
"name": "python",
|
| 241 |
+
"nbconvert_exporter": "python",
|
| 242 |
+
"pygments_lexer": "ipython3",
|
| 243 |
+
"version": "3.10.11"
|
| 244 |
+
}
|
| 245 |
+
},
|
| 246 |
+
"nbformat": 4,
|
| 247 |
+
"nbformat_minor": 2
|
| 248 |
+
}
|
perceptron_movie_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:504ce3134f1dd442880c222e37d7cdd19ea8262ff433a844608f8a39508e362e
|
| 3 |
+
size 2264
|