import json
import random
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import onnxruntime
import torch
import torchvision.transforms.functional as F
from huggingface_hub import hf_hub_download
from PIL import Image, ImageColor
from torchvision.io import read_image
from torchvision.models.detection import MaskRCNN_ResNet50_FPN_Weights
from torchvision.utils import draw_bounding_boxes, draw_segmentation_masks
# Load pre-trained model transformations.
weights = MaskRCNN_ResNet50_FPN_Weights.DEFAULT
transforms = weights.transforms()
def fix_category_id(cat_ids: list):
# Define the excluded category ids and the remaining ones
excluded_indices = {2, 12, 16, 19, 20}
remaining_categories = list(set(range(27)) - excluded_indices)
# Create a dictionary that maps new IDs to old(original) IDs
new_id_to_org_id = dict(zip(range(len(remaining_categories)), remaining_categories))
return [new_id_to_org_id[i-1]+1 for i in cat_ids]
def process_categories() -> tuple:
"""
Load and process category information from a JSON file.
Returns a tuple containing two dictionaries: `category_id_to_name` maps category IDs to their names, and
`category_id_to_color` maps category IDs to a randomly sampled RGB color.
Returns:
tuple: A tuple containing two dictionaries:
- `category_id_to_name`: a dictionary mapping category IDs to their names.
- `category_id_to_color`: a dictionary mapping category IDs to a randomly sampled RGB color.
"""
# Load raw categories from JSON file
with open("categories.json") as fp:
categories = json.load(fp)
# Map category IDs to names
category_id_to_name = {d["id"]: d["name"] for d in categories}
# Set the seed for the random sampling operation
random.seed(42)
# Get a list of all the color names in the PIL colormap
color_names = list(ImageColor.colormap.keys())
# Sample 46 unique colors from the list of color names
sampled_colors = random.sample(color_names, 46)
# Convert the color names to RGB values
rgb_colors = [ImageColor.getrgb(color_name) for color_name in sampled_colors]
# Map category IDs to colors
category_id_to_color = {
category["id"]: color for category, color in zip(categories, rgb_colors)
}
return category_id_to_name, category_id_to_color
def draw_predictions(
boxes, labels, scores, masks, img, model_name, score_threshold, proba_threshold
):
"""
Draw predictions on the input image based on the provided boxes, labels, scores, and masks. Only predictions
with scores above the `score_threshold` will be included, and masks with probabilities exceeding the
`proba_threshold` will be displayed.
Args:
- boxes: numpy.ndarray - an array of bounding box coordinates.
- labels: numpy.ndarray - an array of integers representing the predicted class for each bounding box.
- scores: numpy.ndarray - an array of confidence scores for each bounding box.
- masks: numpy.ndarray - an array of binary masks for each bounding box.
- img: PIL.Image.Image - the input image.
- model_name: str - name of the model given by the dropdown menu, either "facere" or "facere+".
- score_threshold: float - a confidence score threshold for filtering out low-scoring bbox predictions.
- proba_threshold: float - a threshold for filtering out low-probability (pixel-wise) mask predictions.
Returns:
- A list of strings, each representing the path to an image file containing the input image with a different
set of predictions drawn (masks, bounding boxes, masks with bounding box labels and scores).
"""
imgs_list = []
# Map label IDs to names and colors
label_id_to_name, label_id_to_color = process_categories()
# Filter out predictions using thresholds
labels_id = labels[scores > score_threshold].tolist()
if model_name == "facere+":
labels_id = fix_category_id(labels_id)
# models output is in range: [1,class_id+1], hence re-map to: [0,class_id]
labels = [label_id_to_name[int(i) - 1] for i in labels_id]
masks = (masks[scores > score_threshold] > proba_threshold).astype(np.uint8)
boxes = boxes[scores > score_threshold]
# Draw masks to input image and save
img_masks = draw_segmentation_masks(
image=img,
masks=torch.from_numpy(masks.squeeze(1).astype(bool)),
alpha=0.9,
colors=[label_id_to_color[int(i) - 1] for i in labels_id],
)
img_masks = F.to_pil_image(img_masks)
img_masks.save("img_masks.png")
imgs_list.append("img_masks.png")
# Draw bboxes to input image and save
img_bbox = draw_bounding_boxes(img, boxes=torch.from_numpy(boxes), width=4)
img_bbox = F.to_pil_image(img_bbox)
img_bbox.save("img_bbox.png")
imgs_list.append("img_bbox.png")
# Save masks with their bbox labels & bbox scores
for col, (mask, label, score) in enumerate(zip(masks, labels, scores)):
mask = Image.fromarray(mask.squeeze())
plt.imshow(mask)
plt.axis("off")
plt.title(f"{label}: {score:.2f}", fontsize=9)
plt.savefig(f"mask-{col}.png")
plt.close()
imgs_list.append(f"mask-{col}.png")
return imgs_list
def inference(image, model_name, mask_threshold, bbox_threshold):
"""
Load the ONNX model and run inference with the provided input `image`. Visualize the predictions and save them in a
figure, which will be shown in the Gradio app.
"""
# Load image.
img = read_image(image)
# Apply original transformation to the image.
img_transformed = transforms(img)
# Download model
path_onnx = hf_hub_download(
repo_id="rizavelioglu/fashionfail",
filename="facere_plus.onnx" if model_name == "facere+" else "facere_base.onnx"
)
# Create an inference session.
ort_session = onnxruntime.InferenceSession(
path_onnx, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]
)
# compute ONNX Runtime output prediction
ort_inputs = {
ort_session.get_inputs()[0].name: img_transformed.unsqueeze(dim=0).numpy()
}
ort_outs = ort_session.run(None, ort_inputs)
boxes, labels, scores, masks = ort_outs
imgs_list = draw_predictions(boxes, labels, scores, masks, img, model_name,
score_threshold=bbox_threshold, proba_threshold=mask_threshold
)
return imgs_list
title = "Facere - Demo"
description = r"""This is the demo of the paper FashionFail: Addressing
Failure Cases in Fashion Object Detection and Segmentation.
Upload your image and choose the model for inference
from the dropdown menu—either `Facere` or `Facere+`
Check out the project page for more information."""
article = r"""
Example images are sampled from the `FashionFail-test` set, which the models did not see during training.
**Citation**
If you find our work useful in your research, please consider giving a star ⭐ and
a citation:
```
@inproceedings{velioglu2024fashionfail,
author = {Velioglu, Riza and Chan, Robin and Hammer, Barbara},
title = {FashionFail: Addressing Failure Cases in Fashion Object Detection and Segmentation},
journal = {IJCNN},
eprint = {2404.08582},
year = {2024},
}
```
"""
examples = [
["adi_103_6.jpg", "facere", 0.5, 0.7],
["adi_103_6.jpg", "facere+", 0.5, 0.7],
["adi_1201_2.jpg", "facere", 0.5, 0.7],
["adi_1201_2.jpg", "facere+", 0.5, 0.7],
["adi_2149_5.jpg", "facere", 0.5, 0.7],
["adi_2149_5.jpg", "facere+", 0.5, 0.7],
["adi_5476_3.jpg", "facere", 0.5, 0.7],
["adi_5476_3.jpg", "facere+", 0.5, 0.7],
["adi_5641_4.jpg", "facere", 0.5, 0.7],
["adi_5641_4.jpg", "facere+", 0.5, 0.7]
]
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="filepath", label="input"),
gr.Dropdown(["facere", "facere+"], value="facere", label="Models"),
gr.Slider(value=0.5, minimum=0.0, maximum=0.9, step=0.05, label="Mask threshold", info="a threshold for "
"filtering out "
"low-probability ("
"pixel-wise) mask "
"predictions"),
gr.Slider(value=0.7, minimum=0.0, maximum=0.9, step=0.05, label="BBox threshold", info="a threshold for "
"filtering out "
"low-scoring bbox "
"predictions")
],
outputs=gr.Gallery(label="output", preview=True, height=500),
title=title,
description=description,
article=article,
examples=examples,
cache_examples=True,
examples_per_page=6
)
if __name__ == "__main__":
demo.launch()