Spaces:
Sleeping
Sleeping
from typing import Any, Callable, Dict, Optional, Sequence | |
# from mistralai.models.chat_completion import ChatMessage | |
from llama_index.core.base.llms.types import ( | |
ChatMessage, | |
ChatResponse, | |
ChatResponseAsyncGen, | |
ChatResponseGen, | |
CompletionResponse, | |
CompletionResponseAsyncGen, | |
CompletionResponseGen, | |
LLMMetadata, | |
MessageRole, | |
) | |
from llama_index.core.bridge.pydantic import Field, PrivateAttr | |
from llama_index.core.callbacks import CallbackManager | |
from llama_index.core.constants import DEFAULT_TEMPERATURE | |
from llama_index.core.llms.callbacks import ( | |
llm_chat_callback, | |
llm_completion_callback, | |
) | |
from llama_index.core.base.llms.generic_utils import ( | |
achat_to_completion_decorator, | |
astream_chat_to_completion_decorator, | |
chat_to_completion_decorator, | |
get_from_param_or_env, | |
stream_chat_to_completion_decorator, | |
) | |
from llama_index.core.llms.llm import LLM | |
from llama_index.core.types import BaseOutputParser, PydanticProgramMode | |
from llama_index.llms.mistralai.utils import ( | |
mistralai_modelname_to_contextsize, | |
) | |
from mistralai.async_client import MistralAsyncClient | |
from mistralai.client import MistralClient | |
DEFAULT_MISTRALAI_MODEL = "mistral-tiny" | |
DEFAULT_MISTRALAI_ENDPOINT = "https://api.mistral.ai" | |
DEFAULT_MISTRALAI_MAX_TOKENS = 512 | |
class MistralAI(LLM): | |
model: str = Field( | |
default=DEFAULT_MISTRALAI_MODEL, description="The mistralai model to use." | |
) | |
temperature: float = Field( | |
default=DEFAULT_TEMPERATURE, | |
description="The temperature to use for sampling.", | |
gte=0.0, | |
lte=1.0, | |
) | |
max_tokens: int = Field( | |
default=DEFAULT_MISTRALAI_MAX_TOKENS, | |
description="The maximum number of tokens to generate.", | |
gt=0, | |
) | |
timeout: float = Field( | |
default=120, description="The timeout to use in seconds.", gte=0 | |
) | |
max_retries: int = Field( | |
default=5, description="The maximum number of API retries.", gte=0 | |
) | |
safe_mode: bool = Field( | |
default=False, | |
description="The parameter to enforce guardrails in chat generations.", | |
) | |
random_seed: str = Field( | |
default=None, description="The random seed to use for sampling." | |
) | |
additional_kwargs: Dict[str, Any] = Field( | |
default_factory=dict, description="Additional kwargs for the MistralAI API." | |
) | |
_client: Any = PrivateAttr() | |
_aclient: Any = PrivateAttr() | |
def __init__( | |
self, | |
model: str = DEFAULT_MISTRALAI_MODEL, | |
temperature: float = DEFAULT_TEMPERATURE, | |
max_tokens: int = DEFAULT_MISTRALAI_MAX_TOKENS, | |
timeout: int = 120, | |
max_retries: int = 5, | |
safe_mode: bool = False, | |
random_seed: Optional[int] = None, | |
api_key: Optional[str] = None, | |
additional_kwargs: Optional[Dict[str, Any]] = None, | |
callback_manager: Optional[CallbackManager] = None, | |
system_prompt: Optional[str] = None, | |
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None, | |
completion_to_prompt: Optional[Callable[[str], str]] = None, | |
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT, | |
output_parser: Optional[BaseOutputParser] = None, | |
) -> None: | |
additional_kwargs = additional_kwargs or {} | |
callback_manager = callback_manager or CallbackManager([]) | |
api_key = get_from_param_or_env("api_key", api_key, "MISTRAL_API_KEY", "") | |
if not api_key: | |
raise ValueError( | |
"You must provide an API key to use mistralai. " | |
"You can either pass it in as an argument or set it `MISTRAL_API_KEY`." | |
) | |
self._client = MistralClient( | |
api_key=api_key, | |
endpoint=DEFAULT_MISTRALAI_ENDPOINT, | |
timeout=timeout, | |
max_retries=max_retries, | |
) | |
self._aclient = MistralAsyncClient( | |
api_key=api_key, | |
endpoint=DEFAULT_MISTRALAI_ENDPOINT, | |
timeout=timeout, | |
max_retries=max_retries, | |
) | |
super().__init__( | |
temperature=temperature, | |
max_tokens=max_tokens, | |
additional_kwargs=additional_kwargs, | |
timeout=timeout, | |
max_retries=max_retries, | |
safe_mode=safe_mode, | |
random_seed=random_seed, | |
model=model, | |
callback_manager=callback_manager, | |
system_prompt=system_prompt, | |
messages_to_prompt=messages_to_prompt, | |
completion_to_prompt=completion_to_prompt, | |
pydantic_program_mode=pydantic_program_mode, | |
output_parser=output_parser, | |
) | |
def class_name(cls) -> str: | |
return "MistralAI_LLM" | |
def metadata(self) -> LLMMetadata: | |
return LLMMetadata( | |
context_window=mistralai_modelname_to_contextsize(self.model), | |
num_output=self.max_tokens, | |
is_chat_model=True, | |
model_name=self.model, | |
safe_mode=self.safe_mode, | |
random_seed=self.random_seed, | |
) | |
def _model_kwargs(self) -> Dict[str, Any]: | |
base_kwargs = { | |
"model": self.model, | |
"temperature": self.temperature, | |
"max_tokens": self.max_tokens, | |
"random_seed": self.random_seed, | |
"safe_mode": self.safe_mode, | |
} | |
return { | |
**base_kwargs, | |
**self.additional_kwargs, | |
} | |
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]: | |
return { | |
**self._model_kwargs, | |
**kwargs, | |
} | |
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse: | |
# convert messages to mistral ChatMessage | |
from mistralai.client import ChatMessage as mistral_chatmessage | |
messages = [ | |
mistral_chatmessage(role=x.role, content=x.content) for x in messages | |
] | |
all_kwargs = self._get_all_kwargs(**kwargs) | |
response = self._client.chat(messages=messages, **all_kwargs) | |
return ChatResponse( | |
message=ChatMessage( | |
role=MessageRole.ASSISTANT, content=response.choices[0].message.content | |
), | |
raw=dict(response), | |
) | |
def complete( | |
self, prompt: str, formatted: bool = False, **kwargs: Any | |
) -> CompletionResponse: | |
complete_fn = chat_to_completion_decorator(self.chat) | |
return complete_fn(prompt, **kwargs) | |
def stream_chat( | |
self, messages: Sequence[ChatMessage], **kwargs: Any | |
) -> ChatResponseGen: | |
# convert messages to mistral ChatMessage | |
from mistralai.client import ChatMessage as mistral_chatmessage | |
messages = [ | |
mistral_chatmessage(role=message.role, content=message.content) | |
for message in messages | |
] | |
all_kwargs = self._get_all_kwargs(**kwargs) | |
response = self._client.chat_stream(messages=messages, **all_kwargs) | |
def gen() -> ChatResponseGen: | |
content = "" | |
role = MessageRole.ASSISTANT | |
for chunk in response: | |
content_delta = chunk.choices[0].delta.content | |
if content_delta is None: | |
continue | |
content += content_delta | |
yield ChatResponse( | |
message=ChatMessage(role=role, content=content), | |
delta=content_delta, | |
raw=chunk, | |
) | |
return gen() | |
def stream_complete( | |
self, prompt: str, formatted: bool = False, **kwargs: Any | |
) -> CompletionResponseGen: | |
stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat) | |
return stream_complete_fn(prompt, **kwargs) | |
async def achat( | |
self, messages: Sequence[ChatMessage], **kwargs: Any | |
) -> ChatResponse: | |
# convert messages to mistral ChatMessage | |
from mistralai.client import ChatMessage as mistral_chatmessage | |
messages = [ | |
mistral_chatmessage(role=message.role, content=message.content) | |
for message in messages | |
] | |
all_kwargs = self._get_all_kwargs(**kwargs) | |
response = await self._aclient.chat(messages=messages, **all_kwargs) | |
return ChatResponse( | |
message=ChatMessage( | |
role=MessageRole.ASSISTANT, content=response.choices[0].message.content | |
), | |
raw=dict(response), | |
) | |
async def acomplete( | |
self, prompt: str, formatted: bool = False, **kwargs: Any | |
) -> CompletionResponse: | |
acomplete_fn = achat_to_completion_decorator(self.achat) | |
return await acomplete_fn(prompt, **kwargs) | |
async def astream_chat( | |
self, messages: Sequence[ChatMessage], **kwargs: Any | |
) -> ChatResponseAsyncGen: | |
# convert messages to mistral ChatMessage | |
from mistralai.client import ChatMessage as mistral_chatmessage | |
messages = [ | |
mistral_chatmessage(role=x.role, content=x.content) for x in messages | |
] | |
all_kwargs = self._get_all_kwargs(**kwargs) | |
response = await self._aclient.chat_stream(messages=messages, **all_kwargs) | |
async def gen() -> ChatResponseAsyncGen: | |
content = "" | |
role = MessageRole.ASSISTANT | |
async for chunk in response: | |
content_delta = chunk.choices[0].delta.content | |
if content_delta is None: | |
continue | |
content += content_delta | |
yield ChatResponse( | |
message=ChatMessage(role=role, content=content), | |
delta=content_delta, | |
raw=chunk, | |
) | |
return gen() | |
async def astream_complete( | |
self, prompt: str, formatted: bool = False, **kwargs: Any | |
) -> CompletionResponseAsyncGen: | |
astream_complete_fn = astream_chat_to_completion_decorator(self.astream_chat) | |
return await astream_complete_fn(prompt, **kwargs) | |