Cédric KACZMAREK
first commit
70b87af
from typing import Any, Callable, Dict, Optional, Sequence
# from mistralai.models.chat_completion import ChatMessage
from llama_index.core.base.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseAsyncGen,
ChatResponseGen,
CompletionResponse,
CompletionResponseAsyncGen,
CompletionResponseGen,
LLMMetadata,
MessageRole,
)
from llama_index.core.bridge.pydantic import Field, PrivateAttr
from llama_index.core.callbacks import CallbackManager
from llama_index.core.constants import DEFAULT_TEMPERATURE
from llama_index.core.llms.callbacks import (
llm_chat_callback,
llm_completion_callback,
)
from llama_index.core.base.llms.generic_utils import (
achat_to_completion_decorator,
astream_chat_to_completion_decorator,
chat_to_completion_decorator,
get_from_param_or_env,
stream_chat_to_completion_decorator,
)
from llama_index.core.llms.llm import LLM
from llama_index.core.types import BaseOutputParser, PydanticProgramMode
from llama_index.llms.mistralai.utils import (
mistralai_modelname_to_contextsize,
)
from mistralai.async_client import MistralAsyncClient
from mistralai.client import MistralClient
DEFAULT_MISTRALAI_MODEL = "mistral-tiny"
DEFAULT_MISTRALAI_ENDPOINT = "https://api.mistral.ai"
DEFAULT_MISTRALAI_MAX_TOKENS = 512
class MistralAI(LLM):
model: str = Field(
default=DEFAULT_MISTRALAI_MODEL, description="The mistralai model to use."
)
temperature: float = Field(
default=DEFAULT_TEMPERATURE,
description="The temperature to use for sampling.",
gte=0.0,
lte=1.0,
)
max_tokens: int = Field(
default=DEFAULT_MISTRALAI_MAX_TOKENS,
description="The maximum number of tokens to generate.",
gt=0,
)
timeout: float = Field(
default=120, description="The timeout to use in seconds.", gte=0
)
max_retries: int = Field(
default=5, description="The maximum number of API retries.", gte=0
)
safe_mode: bool = Field(
default=False,
description="The parameter to enforce guardrails in chat generations.",
)
random_seed: str = Field(
default=None, description="The random seed to use for sampling."
)
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the MistralAI API."
)
_client: Any = PrivateAttr()
_aclient: Any = PrivateAttr()
def __init__(
self,
model: str = DEFAULT_MISTRALAI_MODEL,
temperature: float = DEFAULT_TEMPERATURE,
max_tokens: int = DEFAULT_MISTRALAI_MAX_TOKENS,
timeout: int = 120,
max_retries: int = 5,
safe_mode: bool = False,
random_seed: Optional[int] = None,
api_key: Optional[str] = None,
additional_kwargs: Optional[Dict[str, Any]] = None,
callback_manager: Optional[CallbackManager] = None,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
) -> None:
additional_kwargs = additional_kwargs or {}
callback_manager = callback_manager or CallbackManager([])
api_key = get_from_param_or_env("api_key", api_key, "MISTRAL_API_KEY", "")
if not api_key:
raise ValueError(
"You must provide an API key to use mistralai. "
"You can either pass it in as an argument or set it `MISTRAL_API_KEY`."
)
self._client = MistralClient(
api_key=api_key,
endpoint=DEFAULT_MISTRALAI_ENDPOINT,
timeout=timeout,
max_retries=max_retries,
)
self._aclient = MistralAsyncClient(
api_key=api_key,
endpoint=DEFAULT_MISTRALAI_ENDPOINT,
timeout=timeout,
max_retries=max_retries,
)
super().__init__(
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs,
timeout=timeout,
max_retries=max_retries,
safe_mode=safe_mode,
random_seed=random_seed,
model=model,
callback_manager=callback_manager,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
)
@classmethod
def class_name(cls) -> str:
return "MistralAI_LLM"
@property
def metadata(self) -> LLMMetadata:
return LLMMetadata(
context_window=mistralai_modelname_to_contextsize(self.model),
num_output=self.max_tokens,
is_chat_model=True,
model_name=self.model,
safe_mode=self.safe_mode,
random_seed=self.random_seed,
)
@property
def _model_kwargs(self) -> Dict[str, Any]:
base_kwargs = {
"model": self.model,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
"random_seed": self.random_seed,
"safe_mode": self.safe_mode,
}
return {
**base_kwargs,
**self.additional_kwargs,
}
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
return {
**self._model_kwargs,
**kwargs,
}
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
# convert messages to mistral ChatMessage
from mistralai.client import ChatMessage as mistral_chatmessage
messages = [
mistral_chatmessage(role=x.role, content=x.content) for x in messages
]
all_kwargs = self._get_all_kwargs(**kwargs)
response = self._client.chat(messages=messages, **all_kwargs)
return ChatResponse(
message=ChatMessage(
role=MessageRole.ASSISTANT, content=response.choices[0].message.content
),
raw=dict(response),
)
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
complete_fn = chat_to_completion_decorator(self.chat)
return complete_fn(prompt, **kwargs)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
# convert messages to mistral ChatMessage
from mistralai.client import ChatMessage as mistral_chatmessage
messages = [
mistral_chatmessage(role=message.role, content=message.content)
for message in messages
]
all_kwargs = self._get_all_kwargs(**kwargs)
response = self._client.chat_stream(messages=messages, **all_kwargs)
def gen() -> ChatResponseGen:
content = ""
role = MessageRole.ASSISTANT
for chunk in response:
content_delta = chunk.choices[0].delta.content
if content_delta is None:
continue
content += content_delta
yield ChatResponse(
message=ChatMessage(role=role, content=content),
delta=content_delta,
raw=chunk,
)
return gen()
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
stream_complete_fn = stream_chat_to_completion_decorator(self.stream_chat)
return stream_complete_fn(prompt, **kwargs)
@llm_chat_callback()
async def achat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
# convert messages to mistral ChatMessage
from mistralai.client import ChatMessage as mistral_chatmessage
messages = [
mistral_chatmessage(role=message.role, content=message.content)
for message in messages
]
all_kwargs = self._get_all_kwargs(**kwargs)
response = await self._aclient.chat(messages=messages, **all_kwargs)
return ChatResponse(
message=ChatMessage(
role=MessageRole.ASSISTANT, content=response.choices[0].message.content
),
raw=dict(response),
)
@llm_completion_callback()
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
acomplete_fn = achat_to_completion_decorator(self.achat)
return await acomplete_fn(prompt, **kwargs)
@llm_chat_callback()
async def astream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseAsyncGen:
# convert messages to mistral ChatMessage
from mistralai.client import ChatMessage as mistral_chatmessage
messages = [
mistral_chatmessage(role=x.role, content=x.content) for x in messages
]
all_kwargs = self._get_all_kwargs(**kwargs)
response = await self._aclient.chat_stream(messages=messages, **all_kwargs)
async def gen() -> ChatResponseAsyncGen:
content = ""
role = MessageRole.ASSISTANT
async for chunk in response:
content_delta = chunk.choices[0].delta.content
if content_delta is None:
continue
content += content_delta
yield ChatResponse(
message=ChatMessage(role=role, content=content),
delta=content_delta,
raw=chunk,
)
return gen()
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
astream_complete_fn = astream_chat_to_completion_decorator(self.astream_chat)
return await astream_complete_fn(prompt, **kwargs)