File size: 2,284 Bytes
83be912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Import libraries
import whisper
import os
import gradio as gr
from groq import Groq
from gtts import gTTS
import traceback

# Step 1: Load Whisper Model for Transcription
try:
    model = whisper.load_model("base")
except Exception as e:
    print("Error loading Whisper model:", e)
    model = None

# Step 2: Initialize Groq Client
try:
    client = Groq(api_key = os.getenv("MY_API_KEY"))
except Exception as e:
    print("Error initializing Groq client:", e)
    client = None

# Function to get response from Groq API using LLaMA model
def get_response_from_groq(user_input):
    try:
        chat_completion = client.chat.completions.create(
            messages=[{"role": "user", "content": user_input}],
            model="llama3-8b-8192",
        )
        return chat_completion.choices[0].message.content
    except Exception as e:
        print("Error getting response from Groq API:", e)
        return "Sorry, I couldn't generate a response at this time."

# Step 3: Function to convert text to speech using gTTS
def text_to_speech(text):
    try:
        tts = gTTS(text)
        tts.save("response.mp3")
        return "response.mp3"
    except Exception as e:
        print("Error converting text to speech:", e)
        return None

# Step 4: Define the Chatbot Function for Gradio
def chatbot(audio_input):
    try:
        if model is None:
            return "Whisper model not loaded.", "Unable to transcribe.", None
        
        # Transcribe audio input using Whisper
        transcription = model.transcribe(audio_input)["text"]
        
        # Get response from Groq API using LLaMA model
        response = get_response_from_groq(transcription)
        
        # Convert response to speech
        speech_file = text_to_speech(response)
        
        return transcription, response, speech_file
    except Exception as e:
        print("Error in chatbot function:", e)
        traceback.print_exc()
        return "Error occurred during processing.", "Please try again.", None

# Step 5: Create Gradio Interface
try:
    gr.Interface(
        fn=chatbot,
        inputs=gr.Audio(type="filepath"),
        outputs=["text", "text", "audio"],
        live=True
    ).launch()
except Exception as e:
    print("Error launching Gradio interface:", e)