Ryan Kim
adding these files as a backup of an older project that got mangled by Git LFS's size limit
6410115
raw
history blame
3.42 kB
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import os
# We'll be using Torch this time around
import torch
import torch.nn.functional as F
# === VARIABLE DECLARATION ===
model_names = (
"cardiffnlp/twitter-roberta-base-sentiment",
"finiteautomata/beto-sentiment-analysis",
"bhadresh-savani/distilbert-base-uncased-emotion",
"siebert/sentiment-roberta-large-english"
)
def label_dictionary(model_name):
if model_name == "cardiffnlp/twitter-roberta-base-sentiment":
def twitter_roberta(label):
if label == "LABEL_0":
return "Negative"
elif label == "LABEL_2":
return "Positive"
else:
return "Neutral"
return twitter_roberta
return lambda x: x
@st.cache(allow_output_mutation=True)
def load_model(model_name):
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
parser = label_dictionary(model_name)
return model, tokenizer, classifier, parser
# We first initialize a state. The state will include the following:
# 1) the name of the model (default: cardiffnlp/twitter-roberta-base-sentiment)
# 2) the model itself, and
# 3) the parser for the outputs, in case we actually need to parse the output to something more sensible
if "model" not in st.session_state:
st.session_state.model_name = "cardiffnlp/twitter-roberta-base-sentiment"
model, tokenizer, classifier, label_parser = load_model("cardiffnlp/twitter-roberta-base-sentiment")
st.session_state.model = model
st.session_state.tokenizer = tokenizer
st.session_state.classifier = classifier
st.session_state.label_parser = label_parser
def model_change():
model, tokenizer, classifier, label_parser = load_model(st.session_state.model_name)
st.session_state.model = model
st.session_state.tokenizer = tokenizer
st.session_state.classifier = classifier
st.session_state.label_parser = label_parser
model_option = st.selectbox(
"What sentiment analysis model do you want to use?",
model_names,
on_change=model_change,
key="model_name"
)
placeholder="@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."
form = st.form(key='sentiment-analysis-form')
text_input = form.text_area("Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.", placeholder=placeholder)
submit = form.form_submit_button('Submit')
if submit:
if text_input is None or len(text_input.strip()) == 0:
to_eval = placeholder
else:
to_eval = text_input.strip()
st.write("You entered:")
st.markdown("> {}".format(to_eval))
st.write("Using the NLP model:")
st.markdown("> {}".format(st.session_state.model_name))
result = st.session_state.classifier(to_eval)
label = result[0]['label']
score = result[0]['score']
label = st.session_state.label_parser(label)
st.markdown("#### Result:")
st.markdown("**{}**: {}".format(label,score))
st.write("")
st.write("")