Spaces:
Runtime error
Runtime error
Ryan Kim
commited on
Commit
β’
375a093
1
Parent(s):
6bec35d
adding code for training
Browse files
data/train.json
ADDED
Binary file (58.5 MB). View file
|
|
data/val.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
logs/1681910017.7615924/events.out.tfevents.1681910017.025fe27979cb.15711.1
ADDED
Binary file (5.81 kB). View file
|
|
logs/events.out.tfevents.1681910017.025fe27979cb.15711.0
ADDED
Binary file (3.81 kB). View file
|
|
src/patent_train.ipynb
CHANGED
@@ -11,78 +11,51 @@
|
|
11 |
"cell_type": "markdown",
|
12 |
"metadata": {},
|
13 |
"source": [
|
14 |
-
"## Importing Packages"
|
|
|
|
|
15 |
]
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
-
"execution_count":
|
20 |
"metadata": {},
|
21 |
"outputs": [
|
22 |
{
|
23 |
"name": "stdout",
|
24 |
"output_type": "stream",
|
25 |
"text": [
|
26 |
-
"
|
27 |
-
" Downloading datasets-2.11.0-py3-none-any.whl (468 kB)\n",
|
28 |
-
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m468.7/468.7 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
|
29 |
-
"\u001b[?25hRequirement already satisfied: tqdm>=4.62.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (4.64.1)\n",
|
30 |
-
"Requirement already satisfied: pyarrow>=8.0.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (9.0.0)\n",
|
31 |
"Requirement already satisfied: fsspec[http]>=2021.11.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (2022.8.2)\n",
|
32 |
-
"Collecting aiohttp\n",
|
33 |
-
" Downloading aiohttp-3.8.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB)\n",
|
34 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.0/1.0 MB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
|
35 |
-
"\u001b[?25hCollecting huggingface-hub<1.0.0,>=0.11.0\n",
|
36 |
-
" Downloading huggingface_hub-0.13.3-py3-none-any.whl (199 kB)\n",
|
37 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m199.8/199.8 kB\u001b[0m \u001b[31m18.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
38 |
-
"\u001b[?25hRequirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from datasets) (1.5.0)\n",
|
39 |
-
"Requirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from datasets) (21.3)\n",
|
40 |
-
"Collecting responses<0.19\n",
|
41 |
-
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
|
42 |
-
"Requirement already satisfied: dill<0.3.7,>=0.3.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (0.3.5.1)\n",
|
43 |
-
"Collecting xxhash\n",
|
44 |
-
" Downloading xxhash-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (242 kB)\n",
|
45 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m242.7/242.7 kB\u001b[0m \u001b[31m11.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
46 |
-
"\u001b[?25hRequirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (2.28.1)\n",
|
47 |
-
"Collecting multiprocess\n",
|
48 |
-
" Downloading multiprocess-0.70.14-py310-none-any.whl (134 kB)\n",
|
49 |
-
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m134.3/134.3 kB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
50 |
-
"\u001b[?25hRequirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (6.0)\n",
|
51 |
"Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from datasets) (1.23.3)\n",
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
|
|
|
|
62 |
"Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (22.1.0)\n",
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.11.0->datasets) (4.4.0)\n",
|
|
|
70 |
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->datasets) (3.0.9)\n",
|
|
|
71 |
"Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (3.4)\n",
|
72 |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (1.26.11)\n",
|
73 |
-
"Requirement already satisfied:
|
74 |
-
"Collecting dill<0.3.7,>=0.3.0\n",
|
75 |
-
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
|
76 |
-
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
77 |
-
"\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2.8.2)\n",
|
78 |
"Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2022.4)\n",
|
79 |
-
"Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n"
|
80 |
-
"Installing collected packages: xxhash, multidict, frozenlist, filelock, dill, async-timeout, yarl, responses, multiprocess, huggingface-hub, aiosignal, aiohttp, datasets\n",
|
81 |
-
" Attempting uninstall: dill\n",
|
82 |
-
" Found existing installation: dill 0.3.5.1\n",
|
83 |
-
" Uninstalling dill-0.3.5.1:\n",
|
84 |
-
" Successfully uninstalled dill-0.3.5.1\n",
|
85 |
-
"Successfully installed aiohttp-3.8.4 aiosignal-1.3.1 async-timeout-4.0.2 datasets-2.11.0 dill-0.3.6 filelock-3.10.7 frozenlist-1.3.3 huggingface-hub-0.13.3 multidict-6.0.4 multiprocess-0.70.14 responses-0.18.0 xxhash-3.2.0 yarl-1.8.2\n"
|
86 |
]
|
87 |
}
|
88 |
],
|
@@ -92,14 +65,13 @@
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
-
"execution_count":
|
96 |
"metadata": {},
|
97 |
"outputs": [],
|
98 |
"source": [
|
99 |
"from datasets import load_dataset\n",
|
100 |
"import pandas as pd\n",
|
101 |
-
"import numpy as np
|
102 |
-
"import matplotlib.pyplot as plt"
|
103 |
]
|
104 |
},
|
105 |
{
|
@@ -113,25 +85,25 @@
|
|
113 |
"cell_type": "markdown",
|
114 |
"metadata": {},
|
115 |
"source": [
|
116 |
-
"We
|
117 |
]
|
118 |
},
|
119 |
{
|
120 |
"cell_type": "code",
|
121 |
-
"execution_count":
|
122 |
"metadata": {},
|
123 |
"outputs": [
|
124 |
{
|
125 |
"name": "stderr",
|
126 |
"output_type": "stream",
|
127 |
"text": [
|
128 |
-
"Found cached dataset hupd (/home/jovyan/.cache/huggingface/datasets/HUPD___hupd/sample-
|
129 |
]
|
130 |
},
|
131 |
{
|
132 |
"data": {
|
133 |
"application/vnd.jupyter.widget-view+json": {
|
134 |
-
"model_id": "
|
135 |
"version_major": 2,
|
136 |
"version_minor": 0
|
137 |
},
|
@@ -164,7 +136,7 @@
|
|
164 |
},
|
165 |
{
|
166 |
"cell_type": "code",
|
167 |
-
"execution_count":
|
168 |
"metadata": {},
|
169 |
"outputs": [
|
170 |
{
|
@@ -197,7 +169,7 @@
|
|
197 |
},
|
198 |
{
|
199 |
"cell_type": "code",
|
200 |
-
"execution_count":
|
201 |
"metadata": {},
|
202 |
"outputs": [],
|
203 |
"source": [
|
@@ -214,7 +186,7 @@
|
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
217 |
-
"execution_count":
|
218 |
"metadata": {},
|
219 |
"outputs": [
|
220 |
{
|
@@ -555,7 +527,7 @@
|
|
555 |
"[16153 rows x 14 columns]"
|
556 |
]
|
557 |
},
|
558 |
-
"execution_count":
|
559 |
"metadata": {},
|
560 |
"output_type": "execute_result"
|
561 |
}
|
@@ -587,7 +559,7 @@
|
|
587 |
},
|
588 |
{
|
589 |
"cell_type": "code",
|
590 |
-
"execution_count":
|
591 |
"metadata": {},
|
592 |
"outputs": [],
|
593 |
"source": [
|
@@ -597,7 +569,7 @@
|
|
597 |
},
|
598 |
{
|
599 |
"cell_type": "code",
|
600 |
-
"execution_count":
|
601 |
"metadata": {},
|
602 |
"outputs": [],
|
603 |
"source": [
|
@@ -609,7 +581,7 @@
|
|
609 |
},
|
610 |
{
|
611 |
"cell_type": "code",
|
612 |
-
"execution_count":
|
613 |
"metadata": {},
|
614 |
"outputs": [
|
615 |
{
|
@@ -740,7 +712,7 @@
|
|
740 |
"[8719 rows x 3 columns]"
|
741 |
]
|
742 |
},
|
743 |
-
"execution_count":
|
744 |
"metadata": {},
|
745 |
"output_type": "execute_result"
|
746 |
}
|
@@ -751,7 +723,7 @@
|
|
751 |
},
|
752 |
{
|
753 |
"cell_type": "code",
|
754 |
-
"execution_count":
|
755 |
"metadata": {},
|
756 |
"outputs": [],
|
757 |
"source": [
|
@@ -763,7 +735,7 @@
|
|
763 |
},
|
764 |
{
|
765 |
"cell_type": "code",
|
766 |
-
"execution_count":
|
767 |
"metadata": {},
|
768 |
"outputs": [
|
769 |
{
|
@@ -894,7 +866,7 @@
|
|
894 |
"[4888 rows x 3 columns]"
|
895 |
]
|
896 |
},
|
897 |
-
"execution_count":
|
898 |
"metadata": {},
|
899 |
"output_type": "execute_result"
|
900 |
}
|
@@ -912,7 +884,7 @@
|
|
912 |
},
|
913 |
{
|
914 |
"cell_type": "code",
|
915 |
-
"execution_count":
|
916 |
"metadata": {},
|
917 |
"outputs": [],
|
918 |
"source": [
|
@@ -921,7 +893,7 @@
|
|
921 |
},
|
922 |
{
|
923 |
"cell_type": "code",
|
924 |
-
"execution_count":
|
925 |
"metadata": {},
|
926 |
"outputs": [],
|
927 |
"source": [
|
@@ -931,7 +903,7 @@
|
|
931 |
},
|
932 |
{
|
933 |
"cell_type": "code",
|
934 |
-
"execution_count":
|
935 |
"metadata": {},
|
936 |
"outputs": [
|
937 |
{
|
@@ -1062,7 +1034,7 @@
|
|
1062 |
"[8719 rows x 3 columns]"
|
1063 |
]
|
1064 |
},
|
1065 |
-
"execution_count":
|
1066 |
"metadata": {},
|
1067 |
"output_type": "execute_result"
|
1068 |
}
|
@@ -1073,7 +1045,7 @@
|
|
1073 |
},
|
1074 |
{
|
1075 |
"cell_type": "code",
|
1076 |
-
"execution_count":
|
1077 |
"metadata": {},
|
1078 |
"outputs": [
|
1079 |
{
|
@@ -1204,7 +1176,7 @@
|
|
1204 |
"[4888 rows x 3 columns]"
|
1205 |
]
|
1206 |
},
|
1207 |
-
"execution_count":
|
1208 |
"metadata": {},
|
1209 |
"output_type": "execute_result"
|
1210 |
}
|
@@ -1213,6 +1185,432 @@
|
|
1213 |
"valDF2"
|
1214 |
]
|
1215 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1216 |
{
|
1217 |
"cell_type": "code",
|
1218 |
"execution_count": null,
|
|
|
11 |
"cell_type": "markdown",
|
12 |
"metadata": {},
|
13 |
"source": [
|
14 |
+
"## Importing Packages\n",
|
15 |
+
"\n",
|
16 |
+
"We first need to import the actual USPTO dataset."
|
17 |
]
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
+
"execution_count": 1,
|
22 |
"metadata": {},
|
23 |
"outputs": [
|
24 |
{
|
25 |
"name": "stdout",
|
26 |
"output_type": "stream",
|
27 |
"text": [
|
28 |
+
"Requirement already satisfied: datasets in /opt/conda/lib/python3.10/site-packages (2.11.0)\n",
|
|
|
|
|
|
|
|
|
29 |
"Requirement already satisfied: fsspec[http]>=2021.11.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (2022.8.2)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from datasets) (1.23.3)\n",
|
31 |
+
"Requirement already satisfied: tqdm>=4.62.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (4.64.1)\n",
|
32 |
+
"Requirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (2.28.1)\n",
|
33 |
+
"Requirement already satisfied: pyarrow>=8.0.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (9.0.0)\n",
|
34 |
+
"Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from datasets) (6.0)\n",
|
35 |
+
"Requirement already satisfied: pandas in /opt/conda/lib/python3.10/site-packages (from datasets) (1.5.0)\n",
|
36 |
+
"Requirement already satisfied: huggingface-hub<1.0.0,>=0.11.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (0.13.4)\n",
|
37 |
+
"Requirement already satisfied: responses<0.19 in /opt/conda/lib/python3.10/site-packages (from datasets) (0.18.0)\n",
|
38 |
+
"Requirement already satisfied: xxhash in /opt/conda/lib/python3.10/site-packages (from datasets) (3.2.0)\n",
|
39 |
+
"Requirement already satisfied: dill<0.3.7,>=0.3.0 in /opt/conda/lib/python3.10/site-packages (from datasets) (0.3.6)\n",
|
40 |
+
"Requirement already satisfied: aiohttp in /opt/conda/lib/python3.10/site-packages (from datasets) (3.8.4)\n",
|
41 |
+
"Requirement already satisfied: packaging in /opt/conda/lib/python3.10/site-packages (from datasets) (21.3)\n",
|
42 |
+
"Requirement already satisfied: multiprocess in /opt/conda/lib/python3.10/site-packages (from datasets) (0.70.14)\n",
|
43 |
"Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (22.1.0)\n",
|
44 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (1.3.1)\n",
|
45 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (4.0.2)\n",
|
46 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (6.0.4)\n",
|
47 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (1.8.2)\n",
|
48 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (1.3.3)\n",
|
49 |
+
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /opt/conda/lib/python3.10/site-packages (from aiohttp->datasets) (2.1.1)\n",
|
50 |
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.11.0->datasets) (4.4.0)\n",
|
51 |
+
"Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from huggingface-hub<1.0.0,>=0.11.0->datasets) (3.12.0)\n",
|
52 |
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging->datasets) (3.0.9)\n",
|
53 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (2022.9.24)\n",
|
54 |
"Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (3.4)\n",
|
55 |
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests>=2.19.0->datasets) (1.26.11)\n",
|
56 |
+
"Requirement already satisfied: python-dateutil>=2.8.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2.8.2)\n",
|
|
|
|
|
|
|
|
|
57 |
"Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.10/site-packages (from pandas->datasets) (2022.4)\n",
|
58 |
+
"Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
]
|
60 |
}
|
61 |
],
|
|
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
+
"execution_count": 2,
|
69 |
"metadata": {},
|
70 |
"outputs": [],
|
71 |
"source": [
|
72 |
"from datasets import load_dataset\n",
|
73 |
"import pandas as pd\n",
|
74 |
+
"import numpy as np"
|
|
|
75 |
]
|
76 |
},
|
77 |
{
|
|
|
85 |
"cell_type": "markdown",
|
86 |
"metadata": {},
|
87 |
"source": [
|
88 |
+
"We need to extract the dataset. We filter only for those in January 2016."
|
89 |
]
|
90 |
},
|
91 |
{
|
92 |
"cell_type": "code",
|
93 |
+
"execution_count": 3,
|
94 |
"metadata": {},
|
95 |
"outputs": [
|
96 |
{
|
97 |
"name": "stderr",
|
98 |
"output_type": "stream",
|
99 |
"text": [
|
100 |
+
"Found cached dataset hupd (/home/jovyan/.cache/huggingface/datasets/HUPD___hupd/sample-a4eeba92b4229e93/0.0.0/6920d2def8fd7767046c0470603357f76866e5a09c97e19571896bfdca521142)\n"
|
101 |
]
|
102 |
},
|
103 |
{
|
104 |
"data": {
|
105 |
"application/vnd.jupyter.widget-view+json": {
|
106 |
+
"model_id": "e39fd26828774c8e9d159a8b5d91c4f5",
|
107 |
"version_major": 2,
|
108 |
"version_minor": 0
|
109 |
},
|
|
|
136 |
},
|
137 |
{
|
138 |
"cell_type": "code",
|
139 |
+
"execution_count": 4,
|
140 |
"metadata": {},
|
141 |
"outputs": [
|
142 |
{
|
|
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
+
"execution_count": 5,
|
173 |
"metadata": {},
|
174 |
"outputs": [],
|
175 |
"source": [
|
|
|
186 |
},
|
187 |
{
|
188 |
"cell_type": "code",
|
189 |
+
"execution_count": 6,
|
190 |
"metadata": {},
|
191 |
"outputs": [
|
192 |
{
|
|
|
527 |
"[16153 rows x 14 columns]"
|
528 |
]
|
529 |
},
|
530 |
+
"execution_count": 6,
|
531 |
"metadata": {},
|
532 |
"output_type": "execute_result"
|
533 |
}
|
|
|
559 |
},
|
560 |
{
|
561 |
"cell_type": "code",
|
562 |
+
"execution_count": 7,
|
563 |
"metadata": {},
|
564 |
"outputs": [],
|
565 |
"source": [
|
|
|
569 |
},
|
570 |
{
|
571 |
"cell_type": "code",
|
572 |
+
"execution_count": 8,
|
573 |
"metadata": {},
|
574 |
"outputs": [],
|
575 |
"source": [
|
|
|
581 |
},
|
582 |
{
|
583 |
"cell_type": "code",
|
584 |
+
"execution_count": 9,
|
585 |
"metadata": {},
|
586 |
"outputs": [
|
587 |
{
|
|
|
712 |
"[8719 rows x 3 columns]"
|
713 |
]
|
714 |
},
|
715 |
+
"execution_count": 9,
|
716 |
"metadata": {},
|
717 |
"output_type": "execute_result"
|
718 |
}
|
|
|
723 |
},
|
724 |
{
|
725 |
"cell_type": "code",
|
726 |
+
"execution_count": 10,
|
727 |
"metadata": {},
|
728 |
"outputs": [],
|
729 |
"source": [
|
|
|
735 |
},
|
736 |
{
|
737 |
"cell_type": "code",
|
738 |
+
"execution_count": 11,
|
739 |
"metadata": {},
|
740 |
"outputs": [
|
741 |
{
|
|
|
866 |
"[4888 rows x 3 columns]"
|
867 |
]
|
868 |
},
|
869 |
+
"execution_count": 11,
|
870 |
"metadata": {},
|
871 |
"output_type": "execute_result"
|
872 |
}
|
|
|
884 |
},
|
885 |
{
|
886 |
"cell_type": "code",
|
887 |
+
"execution_count": 12,
|
888 |
"metadata": {},
|
889 |
"outputs": [],
|
890 |
"source": [
|
|
|
893 |
},
|
894 |
{
|
895 |
"cell_type": "code",
|
896 |
+
"execution_count": 13,
|
897 |
"metadata": {},
|
898 |
"outputs": [],
|
899 |
"source": [
|
|
|
903 |
},
|
904 |
{
|
905 |
"cell_type": "code",
|
906 |
+
"execution_count": 14,
|
907 |
"metadata": {},
|
908 |
"outputs": [
|
909 |
{
|
|
|
1034 |
"[8719 rows x 3 columns]"
|
1035 |
]
|
1036 |
},
|
1037 |
+
"execution_count": 14,
|
1038 |
"metadata": {},
|
1039 |
"output_type": "execute_result"
|
1040 |
}
|
|
|
1045 |
},
|
1046 |
{
|
1047 |
"cell_type": "code",
|
1048 |
+
"execution_count": 15,
|
1049 |
"metadata": {},
|
1050 |
"outputs": [
|
1051 |
{
|
|
|
1176 |
"[4888 rows x 3 columns]"
|
1177 |
]
|
1178 |
},
|
1179 |
+
"execution_count": 15,
|
1180 |
"metadata": {},
|
1181 |
"output_type": "execute_result"
|
1182 |
}
|
|
|
1185 |
"valDF2"
|
1186 |
]
|
1187 |
},
|
1188 |
+
{
|
1189 |
+
"cell_type": "markdown",
|
1190 |
+
"metadata": {},
|
1191 |
+
"source": [
|
1192 |
+
"We combine the `abstract` and `claims` columns into a single `text` column. We also re-label the `decision` column to `label`."
|
1193 |
+
]
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"cell_type": "code",
|
1197 |
+
"execution_count": 16,
|
1198 |
+
"metadata": {},
|
1199 |
+
"outputs": [
|
1200 |
+
{
|
1201 |
+
"data": {
|
1202 |
+
"text/html": [
|
1203 |
+
"<div>\n",
|
1204 |
+
"<style scoped>\n",
|
1205 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1206 |
+
" vertical-align: middle;\n",
|
1207 |
+
" }\n",
|
1208 |
+
"\n",
|
1209 |
+
" .dataframe tbody tr th {\n",
|
1210 |
+
" vertical-align: top;\n",
|
1211 |
+
" }\n",
|
1212 |
+
"\n",
|
1213 |
+
" .dataframe thead th {\n",
|
1214 |
+
" text-align: right;\n",
|
1215 |
+
" }\n",
|
1216 |
+
"</style>\n",
|
1217 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1218 |
+
" <thead>\n",
|
1219 |
+
" <tr style=\"text-align: right;\">\n",
|
1220 |
+
" <th></th>\n",
|
1221 |
+
" <th>label</th>\n",
|
1222 |
+
" <th>text</th>\n",
|
1223 |
+
" </tr>\n",
|
1224 |
+
" </thead>\n",
|
1225 |
+
" <tbody>\n",
|
1226 |
+
" <tr>\n",
|
1227 |
+
" <th>0</th>\n",
|
1228 |
+
" <td>1</td>\n",
|
1229 |
+
" <td>The present invention relates to passive optic...</td>\n",
|
1230 |
+
" </tr>\n",
|
1231 |
+
" <tr>\n",
|
1232 |
+
" <th>1</th>\n",
|
1233 |
+
" <td>1</td>\n",
|
1234 |
+
" <td>Embodiments of the invention provide a method ...</td>\n",
|
1235 |
+
" </tr>\n",
|
1236 |
+
" <tr>\n",
|
1237 |
+
" <th>3</th>\n",
|
1238 |
+
" <td>1</td>\n",
|
1239 |
+
" <td>A crystal growth furnace comprising a crucible...</td>\n",
|
1240 |
+
" </tr>\n",
|
1241 |
+
" <tr>\n",
|
1242 |
+
" <th>4</th>\n",
|
1243 |
+
" <td>0</td>\n",
|
1244 |
+
" <td>A shoe midsole is composed of a base plate (1)...</td>\n",
|
1245 |
+
" </tr>\n",
|
1246 |
+
" <tr>\n",
|
1247 |
+
" <th>5</th>\n",
|
1248 |
+
" <td>1</td>\n",
|
1249 |
+
" <td>A ratchet tool includes a shaft member, a hand...</td>\n",
|
1250 |
+
" </tr>\n",
|
1251 |
+
" <tr>\n",
|
1252 |
+
" <th>...</th>\n",
|
1253 |
+
" <td>...</td>\n",
|
1254 |
+
" <td>...</td>\n",
|
1255 |
+
" </tr>\n",
|
1256 |
+
" <tr>\n",
|
1257 |
+
" <th>16144</th>\n",
|
1258 |
+
" <td>1</td>\n",
|
1259 |
+
" <td>A wavelength tunable laser device, including: ...</td>\n",
|
1260 |
+
" </tr>\n",
|
1261 |
+
" <tr>\n",
|
1262 |
+
" <th>16145</th>\n",
|
1263 |
+
" <td>1</td>\n",
|
1264 |
+
" <td>In one aspect, a method for use in preparing a...</td>\n",
|
1265 |
+
" </tr>\n",
|
1266 |
+
" <tr>\n",
|
1267 |
+
" <th>16148</th>\n",
|
1268 |
+
" <td>1</td>\n",
|
1269 |
+
" <td>A robot hand controlling method executes calcu...</td>\n",
|
1270 |
+
" </tr>\n",
|
1271 |
+
" <tr>\n",
|
1272 |
+
" <th>16149</th>\n",
|
1273 |
+
" <td>0</td>\n",
|
1274 |
+
" <td>A fusion protein is disclosed. The fusion prot...</td>\n",
|
1275 |
+
" </tr>\n",
|
1276 |
+
" <tr>\n",
|
1277 |
+
" <th>16150</th>\n",
|
1278 |
+
" <td>0</td>\n",
|
1279 |
+
" <td>A pipe extraction tool that grips the inside o...</td>\n",
|
1280 |
+
" </tr>\n",
|
1281 |
+
" </tbody>\n",
|
1282 |
+
"</table>\n",
|
1283 |
+
"<p>8719 rows Γ 2 columns</p>\n",
|
1284 |
+
"</div>"
|
1285 |
+
],
|
1286 |
+
"text/plain": [
|
1287 |
+
" label text\n",
|
1288 |
+
"0 1 The present invention relates to passive optic...\n",
|
1289 |
+
"1 1 Embodiments of the invention provide a method ...\n",
|
1290 |
+
"3 1 A crystal growth furnace comprising a crucible...\n",
|
1291 |
+
"4 0 A shoe midsole is composed of a base plate (1)...\n",
|
1292 |
+
"5 1 A ratchet tool includes a shaft member, a hand...\n",
|
1293 |
+
"... ... ...\n",
|
1294 |
+
"16144 1 A wavelength tunable laser device, including: ...\n",
|
1295 |
+
"16145 1 In one aspect, a method for use in preparing a...\n",
|
1296 |
+
"16148 1 A robot hand controlling method executes calcu...\n",
|
1297 |
+
"16149 0 A fusion protein is disclosed. The fusion prot...\n",
|
1298 |
+
"16150 0 A pipe extraction tool that grips the inside o...\n",
|
1299 |
+
"\n",
|
1300 |
+
"[8719 rows x 2 columns]"
|
1301 |
+
]
|
1302 |
+
},
|
1303 |
+
"execution_count": 16,
|
1304 |
+
"metadata": {},
|
1305 |
+
"output_type": "execute_result"
|
1306 |
+
}
|
1307 |
+
],
|
1308 |
+
"source": [
|
1309 |
+
"trainDF3 = trainDF2.rename(columns={'decision': 'label'})\n",
|
1310 |
+
"trainDF3['text'] = trainDF3['abstract'] + ' ' + trainDF3['claims']\n",
|
1311 |
+
"trainDF3.drop(columns=[\"abstract\",\"claims\"],inplace=True)\n",
|
1312 |
+
"trainDF3"
|
1313 |
+
]
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"cell_type": "code",
|
1317 |
+
"execution_count": 17,
|
1318 |
+
"metadata": {},
|
1319 |
+
"outputs": [
|
1320 |
+
{
|
1321 |
+
"data": {
|
1322 |
+
"text/html": [
|
1323 |
+
"<div>\n",
|
1324 |
+
"<style scoped>\n",
|
1325 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1326 |
+
" vertical-align: middle;\n",
|
1327 |
+
" }\n",
|
1328 |
+
"\n",
|
1329 |
+
" .dataframe tbody tr th {\n",
|
1330 |
+
" vertical-align: top;\n",
|
1331 |
+
" }\n",
|
1332 |
+
"\n",
|
1333 |
+
" .dataframe thead th {\n",
|
1334 |
+
" text-align: right;\n",
|
1335 |
+
" }\n",
|
1336 |
+
"</style>\n",
|
1337 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1338 |
+
" <thead>\n",
|
1339 |
+
" <tr style=\"text-align: right;\">\n",
|
1340 |
+
" <th></th>\n",
|
1341 |
+
" <th>label</th>\n",
|
1342 |
+
" <th>text</th>\n",
|
1343 |
+
" </tr>\n",
|
1344 |
+
" </thead>\n",
|
1345 |
+
" <tbody>\n",
|
1346 |
+
" <tr>\n",
|
1347 |
+
" <th>0</th>\n",
|
1348 |
+
" <td>0</td>\n",
|
1349 |
+
" <td>Regimen for the treatment of rosacea include t...</td>\n",
|
1350 |
+
" </tr>\n",
|
1351 |
+
" <tr>\n",
|
1352 |
+
" <th>1</th>\n",
|
1353 |
+
" <td>1</td>\n",
|
1354 |
+
" <td>A clamp arrangement includes a pair of bracket...</td>\n",
|
1355 |
+
" </tr>\n",
|
1356 |
+
" <tr>\n",
|
1357 |
+
" <th>2</th>\n",
|
1358 |
+
" <td>0</td>\n",
|
1359 |
+
" <td>A system and method for device action and conf...</td>\n",
|
1360 |
+
" </tr>\n",
|
1361 |
+
" <tr>\n",
|
1362 |
+
" <th>4</th>\n",
|
1363 |
+
" <td>0</td>\n",
|
1364 |
+
" <td>Systems and methods for managing datasets prod...</td>\n",
|
1365 |
+
" </tr>\n",
|
1366 |
+
" <tr>\n",
|
1367 |
+
" <th>9</th>\n",
|
1368 |
+
" <td>1</td>\n",
|
1369 |
+
" <td>A scan driving circuit is provided. The scan d...</td>\n",
|
1370 |
+
" </tr>\n",
|
1371 |
+
" <tr>\n",
|
1372 |
+
" <th>...</th>\n",
|
1373 |
+
" <td>...</td>\n",
|
1374 |
+
" <td>...</td>\n",
|
1375 |
+
" </tr>\n",
|
1376 |
+
" <tr>\n",
|
1377 |
+
" <th>9085</th>\n",
|
1378 |
+
" <td>0</td>\n",
|
1379 |
+
" <td>The non-rigid gate device as described may be ...</td>\n",
|
1380 |
+
" </tr>\n",
|
1381 |
+
" <tr>\n",
|
1382 |
+
" <th>9090</th>\n",
|
1383 |
+
" <td>0</td>\n",
|
1384 |
+
" <td>The present invention provides an improved unc...</td>\n",
|
1385 |
+
" </tr>\n",
|
1386 |
+
" <tr>\n",
|
1387 |
+
" <th>9091</th>\n",
|
1388 |
+
" <td>1</td>\n",
|
1389 |
+
" <td>A method for detecting a software-race conditi...</td>\n",
|
1390 |
+
" </tr>\n",
|
1391 |
+
" <tr>\n",
|
1392 |
+
" <th>9092</th>\n",
|
1393 |
+
" <td>1</td>\n",
|
1394 |
+
" <td>The present application relates to multi-stage...</td>\n",
|
1395 |
+
" </tr>\n",
|
1396 |
+
" <tr>\n",
|
1397 |
+
" <th>9093</th>\n",
|
1398 |
+
" <td>1</td>\n",
|
1399 |
+
" <td>A paper feeder includes a housing, a driving u...</td>\n",
|
1400 |
+
" </tr>\n",
|
1401 |
+
" </tbody>\n",
|
1402 |
+
"</table>\n",
|
1403 |
+
"<p>4888 rows Γ 2 columns</p>\n",
|
1404 |
+
"</div>"
|
1405 |
+
],
|
1406 |
+
"text/plain": [
|
1407 |
+
" label text\n",
|
1408 |
+
"0 0 Regimen for the treatment of rosacea include t...\n",
|
1409 |
+
"1 1 A clamp arrangement includes a pair of bracket...\n",
|
1410 |
+
"2 0 A system and method for device action and conf...\n",
|
1411 |
+
"4 0 Systems and methods for managing datasets prod...\n",
|
1412 |
+
"9 1 A scan driving circuit is provided. The scan d...\n",
|
1413 |
+
"... ... ...\n",
|
1414 |
+
"9085 0 The non-rigid gate device as described may be ...\n",
|
1415 |
+
"9090 0 The present invention provides an improved unc...\n",
|
1416 |
+
"9091 1 A method for detecting a software-race conditi...\n",
|
1417 |
+
"9092 1 The present application relates to multi-stage...\n",
|
1418 |
+
"9093 1 A paper feeder includes a housing, a driving u...\n",
|
1419 |
+
"\n",
|
1420 |
+
"[4888 rows x 2 columns]"
|
1421 |
+
]
|
1422 |
+
},
|
1423 |
+
"execution_count": 17,
|
1424 |
+
"metadata": {},
|
1425 |
+
"output_type": "execute_result"
|
1426 |
+
}
|
1427 |
+
],
|
1428 |
+
"source": [
|
1429 |
+
"valDF3 = valDF2.rename(columns={'decision': 'label'})\n",
|
1430 |
+
"valDF3['text'] = valDF3['abstract'] + ' ' + valDF3['claims']\n",
|
1431 |
+
"valDF3.drop(columns=[\"abstract\",\"claims\"],inplace=True)\n",
|
1432 |
+
"valDF3"
|
1433 |
+
]
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"cell_type": "markdown",
|
1437 |
+
"metadata": {},
|
1438 |
+
"source": [
|
1439 |
+
"We can grab the data for each column so that we have a list of values for training labels, training texts, validation labels, and validation texts."
|
1440 |
+
]
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"cell_type": "code",
|
1444 |
+
"execution_count": 18,
|
1445 |
+
"metadata": {},
|
1446 |
+
"outputs": [],
|
1447 |
+
"source": [
|
1448 |
+
"trainLabels = trainDF3[\"label\"].tolist()\n",
|
1449 |
+
"trainText = trainDF3[\"text\"].tolist()\n",
|
1450 |
+
"\n",
|
1451 |
+
"valLabels = valDF3[\"label\"].tolist()\n",
|
1452 |
+
"valText = valDF3[\"text\"].tolist()"
|
1453 |
+
]
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"cell_type": "markdown",
|
1457 |
+
"metadata": {},
|
1458 |
+
"source": [
|
1459 |
+
"## Loading the Trainer\n",
|
1460 |
+
"\n",
|
1461 |
+
"Now we can start training! This time, we will just go with `distilbert-base-uncased` for simplicity."
|
1462 |
+
]
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"cell_type": "code",
|
1466 |
+
"execution_count": 19,
|
1467 |
+
"metadata": {},
|
1468 |
+
"outputs": [
|
1469 |
+
{
|
1470 |
+
"name": "stdout",
|
1471 |
+
"output_type": "stream",
|
1472 |
+
"text": [
|
1473 |
+
"Requirement already satisfied: torch in /opt/conda/lib/python3.10/site-packages (2.0.0)\n",
|
1474 |
+
"Requirement already satisfied: nvidia-cusparse-cu11==11.7.4.91 in /opt/conda/lib/python3.10/site-packages (from torch) (11.7.4.91)\n",
|
1475 |
+
"Requirement already satisfied: nvidia-nvtx-cu11==11.7.91 in /opt/conda/lib/python3.10/site-packages (from torch) (11.7.91)\n",
|
1476 |
+
"Requirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch) (3.1.2)\n",
|
1477 |
+
"Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.10/site-packages (from torch) (4.4.0)\n",
|
1478 |
+
"Requirement already satisfied: nvidia-curand-cu11==10.2.10.91 in /opt/conda/lib/python3.10/site-packages (from torch) (10.2.10.91)\n",
|
1479 |
+
"Requirement already satisfied: nvidia-cusolver-cu11==11.4.0.1 in /opt/conda/lib/python3.10/site-packages (from torch) (11.4.0.1)\n",
|
1480 |
+
"Requirement already satisfied: nvidia-cublas-cu11==11.10.3.66 in /opt/conda/lib/python3.10/site-packages (from torch) (11.10.3.66)\n",
|
1481 |
+
"Requirement already satisfied: nvidia-cufft-cu11==10.9.0.58 in /opt/conda/lib/python3.10/site-packages (from torch) (10.9.0.58)\n",
|
1482 |
+
"Requirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch) (1.11.1)\n",
|
1483 |
+
"Requirement already satisfied: nvidia-cuda-runtime-cu11==11.7.99 in /opt/conda/lib/python3.10/site-packages (from torch) (11.7.99)\n",
|
1484 |
+
"Requirement already satisfied: triton==2.0.0 in /opt/conda/lib/python3.10/site-packages (from torch) (2.0.0)\n",
|
1485 |
+
"Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from torch) (3.12.0)\n",
|
1486 |
+
"Requirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch) (2.8.7)\n",
|
1487 |
+
"Requirement already satisfied: nvidia-nccl-cu11==2.14.3 in /opt/conda/lib/python3.10/site-packages (from torch) (2.14.3)\n",
|
1488 |
+
"Requirement already satisfied: nvidia-cuda-cupti-cu11==11.7.101 in /opt/conda/lib/python3.10/site-packages (from torch) (11.7.101)\n",
|
1489 |
+
"Requirement already satisfied: nvidia-cuda-nvrtc-cu11==11.7.99 in /opt/conda/lib/python3.10/site-packages (from torch) (11.7.99)\n",
|
1490 |
+
"Requirement already satisfied: nvidia-cudnn-cu11==8.5.0.96 in /opt/conda/lib/python3.10/site-packages (from torch) (8.5.0.96)\n",
|
1491 |
+
"Requirement already satisfied: setuptools in /opt/conda/lib/python3.10/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch) (65.4.1)\n",
|
1492 |
+
"Requirement already satisfied: wheel in /opt/conda/lib/python3.10/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch) (0.37.1)\n",
|
1493 |
+
"Requirement already satisfied: cmake in /opt/conda/lib/python3.10/site-packages (from triton==2.0.0->torch) (3.26.3)\n",
|
1494 |
+
"Requirement already satisfied: lit in /opt/conda/lib/python3.10/site-packages (from triton==2.0.0->torch) (16.0.1)\n",
|
1495 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch) (2.1.1)\n",
|
1496 |
+
"Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch) (1.2.1)\n",
|
1497 |
+
"Requirement already satisfied: transformers in /opt/conda/lib/python3.10/site-packages (4.28.1)\n",
|
1498 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /opt/conda/lib/python3.10/site-packages (from transformers) (0.13.4)\n",
|
1499 |
+
"Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.10/site-packages (from transformers) (6.0)\n",
|
1500 |
+
"Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.10/site-packages (from transformers) (1.23.3)\n",
|
1501 |
+
"Requirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from transformers) (3.12.0)\n",
|
1502 |
+
"Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.10/site-packages (from transformers) (2023.3.23)\n",
|
1503 |
+
"Requirement already satisfied: tqdm>=4.27 in /opt/conda/lib/python3.10/site-packages (from transformers) (4.64.1)\n",
|
1504 |
+
"Requirement already satisfied: requests in /opt/conda/lib/python3.10/site-packages (from transformers) (2.28.1)\n",
|
1505 |
+
"Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /opt/conda/lib/python3.10/site-packages (from transformers) (0.13.3)\n",
|
1506 |
+
"Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from transformers) (21.3)\n",
|
1507 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/lib/python3.10/site-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.4.0)\n",
|
1508 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/lib/python3.10/site-packages (from packaging>=20.0->transformers) (3.0.9)\n",
|
1509 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (1.26.11)\n",
|
1510 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (2022.9.24)\n",
|
1511 |
+
"Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (3.4)\n",
|
1512 |
+
"Requirement already satisfied: charset-normalizer<3,>=2 in /opt/conda/lib/python3.10/site-packages (from requests->transformers) (2.1.1)\n"
|
1513 |
+
]
|
1514 |
+
}
|
1515 |
+
],
|
1516 |
+
"source": [
|
1517 |
+
"!pip install torch\n",
|
1518 |
+
"!pip install transformers"
|
1519 |
+
]
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"cell_type": "code",
|
1523 |
+
"execution_count": 20,
|
1524 |
+
"metadata": {},
|
1525 |
+
"outputs": [],
|
1526 |
+
"source": [
|
1527 |
+
"import torch\n",
|
1528 |
+
"from torch.utils.data import Dataset\n",
|
1529 |
+
"from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification\n",
|
1530 |
+
"from transformers import Trainer, TrainingArguments"
|
1531 |
+
]
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"cell_type": "code",
|
1535 |
+
"execution_count": 21,
|
1536 |
+
"metadata": {},
|
1537 |
+
"outputs": [],
|
1538 |
+
"source": [
|
1539 |
+
"model_name = \"distilbert-base-uncased\"\n",
|
1540 |
+
"class USPTODataset(Dataset):\n",
|
1541 |
+
" def __init__(self, encodings, labels):\n",
|
1542 |
+
" self.encodings = encodings\n",
|
1543 |
+
" self.labels = labels\n",
|
1544 |
+
" def __getitem__(self, idx):\n",
|
1545 |
+
" item = {key: torch.tensor(val[idx]) for key, val in self.encoding.items()}\n",
|
1546 |
+
" item['labels'] = torch.tensor(self.labels[idx])\n",
|
1547 |
+
" return item\n",
|
1548 |
+
" def __len__(self):\n",
|
1549 |
+
" return len(self.labels)\n"
|
1550 |
+
]
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"cell_type": "code",
|
1554 |
+
"execution_count": 22,
|
1555 |
+
"metadata": {},
|
1556 |
+
"outputs": [],
|
1557 |
+
"source": [
|
1558 |
+
"tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)"
|
1559 |
+
]
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"cell_type": "code",
|
1563 |
+
"execution_count": null,
|
1564 |
+
"metadata": {},
|
1565 |
+
"outputs": [],
|
1566 |
+
"source": [
|
1567 |
+
"train_encodings = tokenizer(trainText, truncation=True, padding=True)\n",
|
1568 |
+
"val_encodings = tokenizer(valText, truncation=True, padding=True)\n",
|
1569 |
+
"\n",
|
1570 |
+
"train_dataset = USPTODataset(train_encodings, trainLabels)\n",
|
1571 |
+
"val_dataset = USPTODataset(val_encodings, valLabels)\n",
|
1572 |
+
"\n",
|
1573 |
+
"train_args = TrainingArguments(\n",
|
1574 |
+
" output_dir=\"./results\",\n",
|
1575 |
+
" num_train_epochs=2,\n",
|
1576 |
+
" per_device_train_batch_size=16,\n",
|
1577 |
+
" per_device_eval_batch_size=64,\n",
|
1578 |
+
" warmup_steps=500,\n",
|
1579 |
+
" learning_rate=5e-5,\n",
|
1580 |
+
" weight_decay=0.01,\n",
|
1581 |
+
" logging_dir=\"./logs\",\n",
|
1582 |
+
" logging_steps=10\n",
|
1583 |
+
")"
|
1584 |
+
]
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"cell_type": "code",
|
1588 |
+
"execution_count": null,
|
1589 |
+
"metadata": {},
|
1590 |
+
"outputs": [],
|
1591 |
+
"source": []
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"cell_type": "code",
|
1595 |
+
"execution_count": null,
|
1596 |
+
"metadata": {},
|
1597 |
+
"outputs": [],
|
1598 |
+
"source": []
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"cell_type": "code",
|
1602 |
+
"execution_count": null,
|
1603 |
+
"metadata": {},
|
1604 |
+
"outputs": [],
|
1605 |
+
"source": []
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"cell_type": "code",
|
1609 |
+
"execution_count": null,
|
1610 |
+
"metadata": {},
|
1611 |
+
"outputs": [],
|
1612 |
+
"source": []
|
1613 |
+
},
|
1614 |
{
|
1615 |
"cell_type": "code",
|
1616 |
"execution_count": null,
|
src/train.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import Dataset, DataLoader
|
8 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
9 |
+
from transformers import Trainer, TrainingArguments, AdamW
|
10 |
+
|
11 |
+
model_name = "distilbert-base-uncased"
|
12 |
+
|
13 |
+
class USPTODataset(Dataset):
|
14 |
+
def __init__(self, encodings, labels):
|
15 |
+
self.encodings = encodings
|
16 |
+
self.labels = labels
|
17 |
+
def __getitem__(self, idx):
|
18 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
19 |
+
item['labels'] = torch.tensor(self.labels[idx])
|
20 |
+
return item
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.labels)
|
23 |
+
|
24 |
+
def LoadDataset():
|
25 |
+
print("=== LOADING THE DATASET ===")
|
26 |
+
# Extracting the dataset, filtering only for Jan. 2016
|
27 |
+
dataset_dict = load_dataset('HUPD/hupd',
|
28 |
+
name='sample',
|
29 |
+
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
30 |
+
icpr_label=None,
|
31 |
+
train_filing_start_date='2016-01-01',
|
32 |
+
train_filing_end_date='2016-01-21',
|
33 |
+
val_filing_start_date='2016-01-22',
|
34 |
+
val_filing_end_date='2016-01-31',
|
35 |
+
)
|
36 |
+
|
37 |
+
print("Separating between training and validation data")
|
38 |
+
df_train = pd.DataFrame(dataset_dict['train'] )
|
39 |
+
df_val = pd.DataFrame(dataset_dict['validation'] )
|
40 |
+
|
41 |
+
|
42 |
+
print("=== PRE-PROCESSING THE DATASET ===")
|
43 |
+
#We are interested in the following columns:
|
44 |
+
# - Abstract
|
45 |
+
# - Claims
|
46 |
+
# - Decision <- our `y`
|
47 |
+
# Let's preprocess them both out of our training and validation data
|
48 |
+
# Also, consider that the "Decision" column has three types of values: "Accepted", "Rejected", and "Pending". To remove unecessary baggage, we will be only looking for "Accepted" and "Rejected".
|
49 |
+
|
50 |
+
necessary_columns = ["abstract","claims","decision"]
|
51 |
+
output_values = ['ACCEPTED','REJECTED']
|
52 |
+
|
53 |
+
print("Dropping unused columns")
|
54 |
+
trainFeaturesToDrop = [col for col in list(df_train.columns) if col not in necessary_columns]
|
55 |
+
trainDF = df_train.dropna()
|
56 |
+
trainDF.drop(columns=trainFeaturesToDrop, inplace=True)
|
57 |
+
trainDF = trainDF[trainDF['decision'].isin(output_values)]
|
58 |
+
valFeaturesToDrop = [col for col in list(df_val.columns) if col not in necessary_columns]
|
59 |
+
valDF = df_val.dropna()
|
60 |
+
valDF.drop(columns=valFeaturesToDrop, inplace=True)
|
61 |
+
valDF = valDF[valDF['decision'].isin(output_values)]
|
62 |
+
|
63 |
+
# We need to replace the values in the `decision` column to numerical representations. ]
|
64 |
+
# We will set "ACCEPTED" as `1` and "REJECTED" as `0`.
|
65 |
+
print("Replacing values in `decision` column")
|
66 |
+
yKey = {"ACCEPTED":1,"REJECTED":0}
|
67 |
+
trainDF2 = trainDF.replace({"decision": yKey})
|
68 |
+
valDF2 = valDF.replace({"decision": yKey})
|
69 |
+
|
70 |
+
# We combine the `abstract` and `claims` columns into a single `text` column.
|
71 |
+
# We also re-label the `decision` column to `label`.
|
72 |
+
print("Combining columns and renaming `decision` to `label`")
|
73 |
+
trainDF3 = trainDF2.rename(columns={'decision': 'label'})
|
74 |
+
trainDF3['text'] = trainDF3['abstract'] + ' ' + trainDF3['claims']
|
75 |
+
trainDF3.drop(columns=["abstract","claims"],inplace=True)
|
76 |
+
|
77 |
+
valDF3 = valDF2.rename(columns={'decision': 'label'})
|
78 |
+
valDF3['text'] = valDF3['abstract'] + ' ' + valDF3['claims']
|
79 |
+
valDF3.drop(columns=["abstract","claims"],inplace=True)
|
80 |
+
|
81 |
+
# We can grab the data for each column so that we have a list of values for training labels,
|
82 |
+
# training texts, validation labels, and validation texts.
|
83 |
+
print("Extracting label and text data from dataframes")
|
84 |
+
trainData = {
|
85 |
+
"labels":trainDF3["label"].tolist(),
|
86 |
+
"text":trainDF3["text"].tolist()
|
87 |
+
}
|
88 |
+
valData = {
|
89 |
+
"labels":valDF3["label"].tolist(),
|
90 |
+
"text":valDF3["text"].tolist()
|
91 |
+
}
|
92 |
+
print(f'TRAINING:\t# labels: {len(trainData["labels"])}\t# texts: {len(trainData["text"])}')
|
93 |
+
print(f'VALID:\t# labels: {len(valData["labels"])}\t# texts: {len(valData["text"])}')
|
94 |
+
|
95 |
+
if not os.path.exists("./data"):
|
96 |
+
os.makedirs('./data')
|
97 |
+
|
98 |
+
with open("./data/train.json", "w") as outfile:
|
99 |
+
json.dump(trainData, outfile, indent=2)
|
100 |
+
with open("./data/val.json", "w") as outfile:
|
101 |
+
json.dump(valData, outfile, indent=2)
|
102 |
+
|
103 |
+
return trainData, valData
|
104 |
+
|
105 |
+
def main():
|
106 |
+
trainDataPath = "./data/train.json"
|
107 |
+
valDataPath = "./data/val.json"
|
108 |
+
trainData = None
|
109 |
+
valData = None
|
110 |
+
|
111 |
+
if os.path.exists(trainDataPath) and os.path.exists(valDataPath):
|
112 |
+
ftrain = open(trainDataPath)
|
113 |
+
trainData = json.load(ftrain)
|
114 |
+
ftrain.close()
|
115 |
+
fval = open(valDataPath)
|
116 |
+
valData = json.load(fval)
|
117 |
+
fval.close()
|
118 |
+
else:
|
119 |
+
trainData, valData = LoadDataset()
|
120 |
+
|
121 |
+
print(len(trainData["labels"]), len(trainData["text"]), len(valData["labels"]), len(valData["text"]))
|
122 |
+
|
123 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
124 |
+
train_encodings = tokenizer(trainData["text"], truncation=True, padding=True)
|
125 |
+
val_encodings = tokenizer(valData["text"], truncation=True, padding=True)
|
126 |
+
|
127 |
+
train_dataset = USPTODataset(train_encodings, trainData["labels"])
|
128 |
+
val_dataset = USPTODataset(val_encodings, valData["labels"])
|
129 |
+
|
130 |
+
train_args = TrainingArguments(
|
131 |
+
output_dir="./results",
|
132 |
+
num_train_epochs=2,
|
133 |
+
per_device_train_batch_size=16,
|
134 |
+
per_device_eval_batch_size=64,
|
135 |
+
warmup_steps=500,
|
136 |
+
learning_rate=5e-5,
|
137 |
+
weight_decay=0.01,
|
138 |
+
logging_dir="./logs",
|
139 |
+
logging_steps=10
|
140 |
+
)
|
141 |
+
|
142 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
143 |
+
trainer = Trainer(
|
144 |
+
model=model,
|
145 |
+
args=train_args,
|
146 |
+
train_dataset=train_dataset,
|
147 |
+
eval_dataset=val_dataset
|
148 |
+
)
|
149 |
+
trainer.train()
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
main()
|