Ryan Kim commited on
Commit
50c9e76
·
1 Parent(s): a7baf1b

Finalizing project code for Milestone #3

Browse files
data/train.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bbe06c7232f904c0501c4dc5b950e4243d887cd7ffab04bfeaa12732514b47c8
3
- size 58602006
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:086044dc3464c21b497dffcccd8358731d55454ac2420c6930b7c358502db8ae
3
+ size 58741536
data/val.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d25635377a60d308197c5a8c0c7df7575953d29cfab91b6c11316266c6a5b27c
3
- size 32744803
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:922dccb1d4d0d2a7ba05651a36a3cbf79c991d17e15da9d4d71f2d90d02c20fd
3
+ size 32823037
models/{upsto_abstracts → uspto_abstracts}/config.json RENAMED
File without changes
models/{upsto_abstracts → uspto_abstracts}/pytorch_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:722ce6348480a8cacca4e0a76890a0cbd216d1b92282b193d6da213c3bdddc71
3
- size 267854125
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc0823d2c79db6e777704b96ab167cfaafca8d828d94c278c231b73f1f46a78d
3
+ size 267855533
models/{upsto_claims → uspto_claims}/config.json RENAMED
File without changes
models/{upsto_claims → uspto_claims}/pytorch_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7f9f3a76da87fb431a84812747386439a1dc4e5d2ad26a80f1a4f65081626746
3
- size 267854125
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbaf746bdb3ec81bce058a51a78c5b8f728e0f5c032c18cd736f939a04b0c279
3
+ size 267855533
src/__pycache__/emotion.cpython-311.pyc ADDED
Binary file (4.62 kB). View file
 
src/emotion.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+
5
+ import os
6
+
7
+ # We'll be using Torch this time around
8
+ import torch
9
+ import torch.nn.functional as F
10
+
11
+ # === VARIABLE DECLARATION ===
12
+ model_names = (
13
+ "cardiffnlp/twitter-roberta-base-sentiment",
14
+ "finiteautomata/beto-sentiment-analysis",
15
+ "bhadresh-savani/distilbert-base-uncased-emotion",
16
+ "siebert/sentiment-roberta-large-english"
17
+ )
18
+
19
+ def label_dictionary(model_name):
20
+ if model_name == "cardiffnlp/twitter-roberta-base-sentiment":
21
+ def twitter_roberta(label):
22
+ if label == "LABEL_0":
23
+ return "Negative"
24
+ elif label == "LABEL_2":
25
+ return "Positive"
26
+ else:
27
+ return "Neutral"
28
+ return twitter_roberta
29
+ return lambda x: x
30
+
31
+ @st.cache(allow_output_mutation=True)
32
+ def load_model(model_name):
33
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
34
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
35
+ classifier = pipeline(task="sentiment-analysis", model=model, tokenizer=tokenizer)
36
+ parser = label_dictionary(model_name)
37
+ return model, tokenizer, classifier, parser
38
+
39
+ # We first initialize a state. The state will include the following:
40
+ # 1) the name of the model (default: cardiffnlp/twitter-roberta-base-sentiment)
41
+ # 2) the model itself, and
42
+ # 3) the parser for the outputs, in case we actually need to parse the output to something more sensible
43
+ if "model" not in st.session_state:
44
+ st.session_state.model_name = "cardiffnlp/twitter-roberta-base-sentiment"
45
+ model, tokenizer, classifier, label_parser = load_model("cardiffnlp/twitter-roberta-base-sentiment")
46
+ st.session_state.model = model
47
+ st.session_state.tokenizer = tokenizer
48
+ st.session_state.classifier = classifier
49
+ st.session_state.label_parser = label_parser
50
+
51
+ def model_change():
52
+ model, tokenizer, classifier, label_parser = load_model(st.session_state.model_name)
53
+ st.session_state.model = model
54
+ st.session_state.tokenizer = tokenizer
55
+ st.session_state.classifier = classifier
56
+ st.session_state.label_parser = label_parser
57
+
58
+ model_option = st.selectbox(
59
+ "What sentiment analysis model do you want to use?",
60
+ model_names,
61
+ on_change=model_change,
62
+ key="model_name"
63
+ )
64
+ placeholder="@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."
65
+ form = st.form(key='sentiment-analysis-form')
66
+ text_input = form.text_area("Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.", placeholder=placeholder)
67
+ submit = form.form_submit_button('Submit')
68
+
69
+ if submit:
70
+ if text_input is None or len(text_input.strip()) == 0:
71
+ to_eval = placeholder
72
+ else:
73
+ to_eval = text_input.strip()
74
+ st.write("You entered:")
75
+ st.markdown("> {}".format(to_eval))
76
+ st.write("Using the NLP model:")
77
+ st.markdown("> {}".format(st.session_state.model_name))
78
+ result = st.session_state.classifier(to_eval)
79
+ label = result[0]['label']
80
+ score = result[0]['score']
81
+
82
+ label = st.session_state.label_parser(label)
83
+
84
+ st.markdown("#### Result:")
85
+ st.markdown("**{}**: {}".format(label,score))
86
+ st.write("")
87
+ st.write("")
src/main.py CHANGED
@@ -2,10 +2,26 @@ import streamlit as st
2
  from transformers import pipeline
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
 
 
 
5
  # We'll be using Torch this time around
6
  import torch
7
  import torch.nn.functional as F
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  def label_dictionary(model_name):
10
  if model_name == "cardiffnlp/twitter-roberta-base-sentiment":
11
  def twitter_roberta(label):
@@ -37,6 +53,7 @@ if "model" not in st.session_state:
37
  st.session_state.tokenizer = tokenizer
38
  st.session_state.classifier = classifier
39
  st.session_state.label_parser = label_parser
 
40
 
41
  def model_change():
42
  model, tokenizer, classifier, label_parser = load_model(st.session_state.model_name)
 
2
  from transformers import pipeline
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
 
5
+ import os
6
+
7
  # We'll be using Torch this time around
8
  import torch
9
  import torch.nn.functional as F
10
 
11
+ model_names = {
12
+ "emotion":[
13
+ "cardiffnlp/twitter-roberta-base-sentiment",
14
+ "finiteautomata/beto-sentiment-analysis",
15
+ "bhadresh-savani/distilbert-base-uncased-emotion",
16
+ "siebert/sentiment-roberta-large-english"
17
+ ],
18
+ "uspto":{
19
+ "base":"distilbert-base-uncased",
20
+ "abstracts":"./models/upsto_abstracts",
21
+ "claims":"./models/upsto_claims"
22
+ }
23
+ }
24
+
25
  def label_dictionary(model_name):
26
  if model_name == "cardiffnlp/twitter-roberta-base-sentiment":
27
  def twitter_roberta(label):
 
53
  st.session_state.tokenizer = tokenizer
54
  st.session_state.classifier = classifier
55
  st.session_state.label_parser = label_parser
56
+ st.session_state.panel = "emotion"
57
 
58
  def model_change():
59
  model, tokenizer, classifier, label_parser = load_model(st.session_state.model_name)
src/patent_train.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
src/test.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import random
4
+
5
+ import streamlit as st
6
+ from transformers import TextClassificationPipeline, pipeline
7
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, DistilBertTokenizerFast, DistilBertForSequenceClassification
8
+
9
+ # We'll be using Torch this time around
10
+ import torch
11
+ import torch.nn.functional as F
12
+
13
+ emotion_model_names = (
14
+ "cardiffnlp/twitter-roberta-base-sentiment",
15
+ "finiteautomata/beto-sentiment-analysis",
16
+ "bhadresh-savani/distilbert-base-uncased-emotion",
17
+ "siebert/sentiment-roberta-large-english"
18
+ )
19
+
20
+ class ModelImplementation(object):
21
+ def __init__(
22
+ self,
23
+ transformer_model_name,
24
+ model_transformer,
25
+ tokenizer_model_name,
26
+ tokenizer_func,
27
+ pipeline_func,
28
+ parser_func,
29
+ classifier_args={},
30
+ placeholders=[""]
31
+ ):
32
+ self.transformer_model_name = transformer_model_name
33
+ self.tokenizer_model_name = tokenizer_model_name
34
+ self.placeholders = placeholders
35
+
36
+ self.model = model_transformer.from_pretrained(self.transformer_model_name)
37
+ self.tokenizer = tokenizer_func.from_pretrained(self.tokenizer_model_name)
38
+ self.classifier = pipeline_func(model=self.model, tokenizer=self.tokenizer, padding=True, truncation=True, **classifier_args)
39
+ self.parser = parser_func
40
+
41
+ self.history = []
42
+
43
+ def predict(self, val):
44
+ result = self.classifier(val)
45
+ return self.parser(self, result)
46
+
47
+ def ParseEmotionOutput(self, result):
48
+ label = result[0]['label']
49
+ score = result[0]['score']
50
+ if self.transformer_model_name == "cardiffnlp/twitter-roberta-base-sentiment":
51
+ if label == "LABEL_0":
52
+ label = "Negative"
53
+ elif label == "LABEL_2":
54
+ label = "Positive"
55
+ else:
56
+ label = "Neutral"
57
+ return label, score
58
+
59
+ def ParsePatentOutput(self, result):
60
+ return result
61
+
62
+ def emotion_model_change():
63
+ st.session_state.emotion_model = ModelImplementation(
64
+ st.session_state.emotion_model_name,
65
+ AutoModelForSequenceClassification,
66
+ st.session_state.emotion_model_name,
67
+ AutoTokenizer,
68
+ pipeline,
69
+ ParseEmotionOutput,
70
+ classifier_args={ "task" : "sentiment-analysis" },
71
+ placeholders=["@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."]
72
+ )
73
+
74
+ if "page" not in st.session_state:
75
+ st.session_state.page = "home"
76
+
77
+ if "emotion_model_name" not in st.session_state:
78
+ st.session_state.emotion_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
79
+ emotion_model_change()
80
+
81
+ if "patent_data" not in st.session_state:
82
+ f = open('./data/val.json')
83
+ valData = json.load(f)
84
+ f.close()
85
+
86
+ patent_data = {}
87
+ for num, label, abstract, claim in zip(valData["patent_numbers"],valData["labels"], valData["abstracts"], valData["claims"]):
88
+ patent_data[num] = {"patent_number":num,"label":label,"abstract":abstract,"claim":claim}
89
+
90
+ st.session_state.patent_data = patent_data
91
+ st.session_state.patent_num = list(patent_data.keys())[0]
92
+ st.session_state.weight = 0.5
93
+ st.session_state.patent_abstract_model = ModelImplementation(
94
+ './models/uspto_abstracts',
95
+ DistilBertForSequenceClassification,
96
+ 'distilbert-base-uncased',
97
+ DistilBertTokenizerFast,
98
+ TextClassificationPipeline,
99
+ ParsePatentOutput,
100
+ classifier_args={"return_all_scores":True},
101
+ )
102
+ print("Patent abstracts model initialized")
103
+ st.session_state.patent_claim_model = ModelImplementation(
104
+ './models/uspto_claims',
105
+ DistilBertForSequenceClassification,
106
+ 'distilbert-base-uncased',
107
+ DistilBertTokenizerFast,
108
+ TextClassificationPipeline,
109
+ ParsePatentOutput,
110
+ classifier_args={"return_all_scores":True},
111
+ )
112
+ print("Patent claims model initialized")
113
+
114
+ # Title
115
+ st.title("CSGY-6613 Project")
116
+ # Subtitle
117
+ st.markdown("_**Ryan Kim (rk2546)**_")
118
+ st.markdown("---")
119
+
120
+ def PageToHome():
121
+ st.session_state.page = "home"
122
+ def PageToEmotion():
123
+ st.session_state.page = "emotion"
124
+ def PageToPatent():
125
+ st.session_state.page = "patent"
126
+
127
+ with st.sidebar:
128
+ st.subheader("Toolbox")
129
+ home_selected = st.button("Home", on_click=PageToHome)
130
+ emotion_selected = st.button(
131
+ "Emotion Analysis [Milestone #2]",
132
+ on_click=PageToEmotion
133
+ )
134
+ patent_selected = st.button(
135
+ "Patent Prediction [Milestone #3]",
136
+ on_click=PageToPatent
137
+ )
138
+
139
+ if st.session_state.page == "emotion":
140
+ st.subheader("Sentiment Analysis")
141
+ if "emotion_model" not in st.session_state:
142
+ st.write("Loading model...")
143
+ else:
144
+ model_option = st.selectbox(
145
+ "What sentiment analysis model do you want to use? NOTE: Lag may occur when loading a new model!",
146
+ emotion_model_names,
147
+ on_change=emotion_model_change,
148
+ key="emotion_model_name"
149
+ )
150
+ form = st.form(key='sentiment-analysis-form')
151
+ text_input = form.text_area(
152
+ "Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.",
153
+ placeholder=st.session_state.emotion_model.placeholders[0]
154
+ )
155
+ submit = form.form_submit_button('Submit')
156
+ if submit:
157
+ if text_input is None or len(text_input.strip()) == 0:
158
+ to_eval = st.session_state.emotion_model.placeholders[0]
159
+ else:
160
+ to_eval = text_input.strip()
161
+ st.write("You entered:")
162
+ st.markdown("> {}".format(to_eval))
163
+ st.write("Using the NLP model:")
164
+ st.markdown("> {}".format(st.session_state.emotion_model_name))
165
+ label, score = st.session_state.emotion_model.predict(to_eval)
166
+ st.markdown("#### Result:")
167
+ st.markdown("**{}**: {}".format(label,score))
168
+
169
+ elif st.session_state.page == "patent":
170
+ st.subheader("USPTO Patent Evaluation")
171
+ st.markdown("Below are two inputs - one for an **ABSTRACT** and another for a list of **CLAIMS**. Enter both and select the \"Submit\" button to evaluate the patenteability of your idea.")
172
+
173
+ patent_select_list = list(st.session_state.patent_data.keys())
174
+ patent_index_option = st.selectbox(
175
+ "Want to pre-populate with an existing patent? Select the index number of below.",
176
+ patent_select_list,
177
+ key="patent_num",
178
+ )
179
+
180
+ print(patent_index_option)
181
+
182
+ if "patent_abstract_model" not in st.session_state or "patent_claim_model" not in st.session_state:
183
+ st.write("Loading models...")
184
+ else:
185
+ with st.form(key='patent-form'):
186
+ col1, col2 = st.columns(2)
187
+ with col1:
188
+ abstract_input = st.text_area(
189
+ "Enter the abstract of the patent below",
190
+ placeholder=st.session_state.patent_data[st.session_state.patent_num]["abstract"],
191
+ height=400
192
+ )
193
+ with col2:
194
+ claim_input = st.text_area(
195
+ "Enter the claims of the patent below",
196
+ placeholder=st.session_state.patent_data[st.session_state.patent_num]["claim"],
197
+ height=400
198
+ )
199
+ weight_val = st.slider(
200
+ "How much do the abstract and claims weight when aggregating a total softmax score?",
201
+ min_value=-1.0,
202
+ max_value=1.0,
203
+ value=0.5,
204
+ )
205
+ submit = st.form_submit_button('Submit')
206
+
207
+ if submit:
208
+
209
+ is_custom = False
210
+ if abstract_input is None or len(abstract_input.strip()) == 0:
211
+ abstract_to_eval = st.session_state.patent_data[st.session_state.patent_num]["abstract"].strip()
212
+ else:
213
+ abstract_to_eval = abstract_input.strip()
214
+ is_custom = True
215
+
216
+ if claim_input is None or len(claim_input.strip()) == 0:
217
+ claim_to_eval = st.session_state.patent_data[st.session_state.patent_num]["claim"].strip()
218
+ else:
219
+ claim_to_eval = claim_input.strip()
220
+ is_custom = True
221
+
222
+ #tokenized_claim = st.session_state.patent_claim_model.tokenizer.encode(claim_to_eval, padding=True, truncation=True, max_length=512, add_special_tokens = True)
223
+ #untokenized_claim = st.session_state.patent_claim_model.tokenizer.decode(tokenized_claim)
224
+ #claim_to_eval2 = untokenized_claim.replace("[CLS]","")
225
+ #claim_to_eval2 = claim_to_eval2.replace("[SEP]","")
226
+ #print(claim_to_eval2)
227
+
228
+ abstract_response = st.session_state.patent_abstract_model.predict(abstract_to_eval)
229
+ claim_response = st.session_state.patent_claim_model.predict(claim_to_eval)
230
+ print(abstract_response[0])
231
+ print(claim_response[0])
232
+ print(weight_val)
233
+
234
+ claim_weight = (1+weight_val)/2
235
+ abstract_weight = 1-claim_weight
236
+ aggregate_score = [
237
+ {'label':'REJECTED','score':abstract_response[0][0]['score']*abstract_weight + claim_response[0][0]['score']*claim_weight},
238
+ {'label':'ACCEPTED','score':abstract_response[0][1]['score']*abstract_weight + claim_response[0][1]['score']*claim_weight}
239
+ ]
240
+ aggregate_score_sorted = sorted(aggregate_score, key=lambda d: d['score'], reverse=True)
241
+ print(aggregate_score_sorted)
242
+ print(f'Original Rating: {st.session_state.patent_data[st.session_state.patent_num]["label"]}')
243
+
244
+ st.markdown("---")
245
+ answerCol1, answerCol2 = st.columns(2)
246
+ with answerCol1:
247
+ st.markdown("### Abstract Ratings")
248
+ st.markdown("""
249
+ > **Reject**: {}
250
+ > **Accept**: {}
251
+ """.format(abstract_response[0][0]["score"], abstract_response[0][1]["score"]))
252
+ with answerCol2:
253
+ st.markdown("### Claims Ratings")
254
+ st.markdown("""
255
+ > **Reject**: {}
256
+ > **Accept**: {}
257
+ """.format(claim_response[0][0]["score"], claim_response[0][1]["score"]))
258
+
259
+ st.markdown(f'### Final Rating: **{aggregate_score_sorted[0]["label"]}**')
260
+ st.markdown("""
261
+ > **Reject**: {}
262
+ > **Accept**: {}
263
+ """.format(aggregate_score[0]['score'], aggregate_score[1]['score']))
264
+
265
+ #if not is_custom:
266
+ # st.markdown('**Original Score:**')
267
+ # st.markdown(st.session_state.patent_data[st.session_state.patent_num]["label"])
268
+
269
+
270
+
271
+
272
+
273
+ else:
274
+ st.write("To get started, access the sidebar on the left (click the arrow in the top-left corner of the screen) and select a tool.")
275
+
276
+ st.write("")
277
+ st.write("")
src/train.py CHANGED
@@ -12,8 +12,8 @@ from transformers import Trainer, TrainingArguments, AdamW
12
 
13
  torch.backends.cuda.matmul.allow_tf32 = True
14
  model_name = "distilbert-base-uncased"
15
- upsto_abstracts_model_path = './models/upsto_abstracts'
16
- upsto_claims_model_path = './models/upsto_claims'
17
 
18
  class USPTODataset(Dataset):
19
  def __init__(self, encodings, labels):
@@ -115,6 +115,9 @@ def TrainModel(trainData, valData):
115
  #val_abstracts_encodings = tokenizer(valData["abstracts"], truncation=True, padding=True)
116
  #val_claims_encodings = tokenizer(valData["claims"], truncation=True, padding=True)
117
 
 
 
 
118
  print("=== CREATING DATASETS ===")
119
  print("\t- initializing dataset for training data")
120
  train_abstracts_dataset = USPTODataset(train_abstracts_encodings, trainData["labels"])
 
12
 
13
  torch.backends.cuda.matmul.allow_tf32 = True
14
  model_name = "distilbert-base-uncased"
15
+ upsto_abstracts_model_path = './models/uspto_abstracts'
16
+ upsto_claims_model_path = './models/uspto_claims'
17
 
18
  class USPTODataset(Dataset):
19
  def __init__(self, encodings, labels):
 
115
  #val_abstracts_encodings = tokenizer(valData["abstracts"], truncation=True, padding=True)
116
  #val_claims_encodings = tokenizer(valData["claims"], truncation=True, padding=True)
117
 
118
+ print(trainData["abstracts"][:10])
119
+ print(trainData["labels"][:10])
120
+
121
  print("=== CREATING DATASETS ===")
122
  print("\t- initializing dataset for training data")
123
  train_abstracts_dataset = USPTODataset(train_abstracts_encodings, trainData["labels"])