Spaces:
Runtime error
Runtime error
Ryan Kim
commited on
Commit
·
835f5ec
1
Parent(s):
9d72e91
moved code from test.py to main.py
Browse files- src/main.py +265 -93
src/main.py
CHANGED
@@ -1,105 +1,277 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
-
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# We'll be using Torch this time around
|
8 |
import torch
|
9 |
import torch.nn.functional as F
|
10 |
|
11 |
-
|
12 |
-
"
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if "
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
st.session_state.
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# Title
|
66 |
-
st.title("CSGY-6613
|
67 |
# Subtitle
|
68 |
-
st.markdown("
|
69 |
-
st.markdown("")
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
st.write("")
|
105 |
-
st.write("")
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
from transformers import TextClassificationPipeline, pipeline
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, DistilBertTokenizerFast, DistilBertForSequenceClassification
|
8 |
|
9 |
# We'll be using Torch this time around
|
10 |
import torch
|
11 |
import torch.nn.functional as F
|
12 |
|
13 |
+
emotion_model_names = (
|
14 |
+
"cardiffnlp/twitter-roberta-base-sentiment",
|
15 |
+
"finiteautomata/beto-sentiment-analysis",
|
16 |
+
"bhadresh-savani/distilbert-base-uncased-emotion",
|
17 |
+
"siebert/sentiment-roberta-large-english"
|
18 |
+
)
|
19 |
+
|
20 |
+
class ModelImplementation(object):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
transformer_model_name,
|
24 |
+
model_transformer,
|
25 |
+
tokenizer_model_name,
|
26 |
+
tokenizer_func,
|
27 |
+
pipeline_func,
|
28 |
+
parser_func,
|
29 |
+
classifier_args={},
|
30 |
+
placeholders=[""]
|
31 |
+
):
|
32 |
+
self.transformer_model_name = transformer_model_name
|
33 |
+
self.tokenizer_model_name = tokenizer_model_name
|
34 |
+
self.placeholders = placeholders
|
35 |
+
|
36 |
+
self.model = model_transformer.from_pretrained(self.transformer_model_name)
|
37 |
+
self.tokenizer = tokenizer_func.from_pretrained(self.tokenizer_model_name)
|
38 |
+
self.classifier = pipeline_func(model=self.model, tokenizer=self.tokenizer, padding=True, truncation=True, **classifier_args)
|
39 |
+
self.parser = parser_func
|
40 |
+
|
41 |
+
self.history = []
|
42 |
+
|
43 |
+
def predict(self, val):
|
44 |
+
result = self.classifier(val)
|
45 |
+
return self.parser(self, result)
|
46 |
+
|
47 |
+
def ParseEmotionOutput(self, result):
|
48 |
+
label = result[0]['label']
|
49 |
+
score = result[0]['score']
|
50 |
+
if self.transformer_model_name == "cardiffnlp/twitter-roberta-base-sentiment":
|
51 |
+
if label == "LABEL_0":
|
52 |
+
label = "Negative"
|
53 |
+
elif label == "LABEL_2":
|
54 |
+
label = "Positive"
|
55 |
+
else:
|
56 |
+
label = "Neutral"
|
57 |
+
return label, score
|
58 |
+
|
59 |
+
def ParsePatentOutput(self, result):
|
60 |
+
return result
|
61 |
+
|
62 |
+
def emotion_model_change():
|
63 |
+
st.session_state.emotion_model = ModelImplementation(
|
64 |
+
st.session_state.emotion_model_name,
|
65 |
+
AutoModelForSequenceClassification,
|
66 |
+
st.session_state.emotion_model_name,
|
67 |
+
AutoTokenizer,
|
68 |
+
pipeline,
|
69 |
+
ParseEmotionOutput,
|
70 |
+
classifier_args={ "task" : "sentiment-analysis" },
|
71 |
+
placeholders=["@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."]
|
72 |
+
)
|
73 |
+
|
74 |
+
if "page" not in st.session_state:
|
75 |
+
st.session_state.page = "home"
|
76 |
+
|
77 |
+
if "emotion_model_name" not in st.session_state:
|
78 |
+
st.session_state.emotion_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
|
79 |
+
emotion_model_change()
|
80 |
+
|
81 |
+
if "patent_data" not in st.session_state:
|
82 |
+
f = open('./data/val.json')
|
83 |
+
valData = json.load(f)
|
84 |
+
f.close()
|
85 |
+
|
86 |
+
patent_data = {}
|
87 |
+
for num, label, abstract, claim in zip(valData["patent_numbers"],valData["labels"], valData["abstracts"], valData["claims"]):
|
88 |
+
patent_data[num] = {"patent_number":num,"label":label,"abstract":abstract,"claim":claim}
|
89 |
+
|
90 |
+
st.session_state.patent_data = patent_data
|
91 |
+
st.session_state.patent_num = list(patent_data.keys())[0]
|
92 |
+
st.session_state.weight = 0.5
|
93 |
+
st.session_state.patent_abstract_model = ModelImplementation(
|
94 |
+
'./models/uspto_abstracts',
|
95 |
+
DistilBertForSequenceClassification,
|
96 |
+
'distilbert-base-uncased',
|
97 |
+
DistilBertTokenizerFast,
|
98 |
+
TextClassificationPipeline,
|
99 |
+
ParsePatentOutput,
|
100 |
+
classifier_args={"return_all_scores":True},
|
101 |
+
)
|
102 |
+
print("Patent abstracts model initialized")
|
103 |
+
st.session_state.patent_claim_model = ModelImplementation(
|
104 |
+
'./models/uspto_claims',
|
105 |
+
DistilBertForSequenceClassification,
|
106 |
+
'distilbert-base-uncased',
|
107 |
+
DistilBertTokenizerFast,
|
108 |
+
TextClassificationPipeline,
|
109 |
+
ParsePatentOutput,
|
110 |
+
classifier_args={"return_all_scores":True},
|
111 |
+
)
|
112 |
+
print("Patent claims model initialized")
|
113 |
|
114 |
# Title
|
115 |
+
st.title("CSGY-6613 Project")
|
116 |
# Subtitle
|
117 |
+
st.markdown("_**Ryan Kim (rk2546)**_")
|
118 |
+
st.markdown("---")
|
119 |
+
|
120 |
+
def PageToHome():
|
121 |
+
st.session_state.page = "home"
|
122 |
+
def PageToEmotion():
|
123 |
+
st.session_state.page = "emotion"
|
124 |
+
def PageToPatent():
|
125 |
+
st.session_state.page = "patent"
|
126 |
+
|
127 |
+
with st.sidebar:
|
128 |
+
st.subheader("Toolbox")
|
129 |
+
home_selected = st.button("Home", on_click=PageToHome)
|
130 |
+
emotion_selected = st.button(
|
131 |
+
"Emotion Analysis [Milestone #2]",
|
132 |
+
on_click=PageToEmotion
|
133 |
+
)
|
134 |
+
patent_selected = st.button(
|
135 |
+
"Patent Prediction [Milestone #3]",
|
136 |
+
on_click=PageToPatent
|
137 |
+
)
|
138 |
+
|
139 |
+
if st.session_state.page == "emotion":
|
140 |
+
st.subheader("Sentiment Analysis")
|
141 |
+
if "emotion_model" not in st.session_state:
|
142 |
+
st.write("Loading model...")
|
143 |
else:
|
144 |
+
model_option = st.selectbox(
|
145 |
+
"What sentiment analysis model do you want to use? NOTE: Lag may occur when loading a new model!",
|
146 |
+
emotion_model_names,
|
147 |
+
on_change=emotion_model_change,
|
148 |
+
key="emotion_model_name"
|
149 |
+
)
|
150 |
+
form = st.form(key='sentiment-analysis-form')
|
151 |
+
text_input = form.text_area(
|
152 |
+
"Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.",
|
153 |
+
placeholder=st.session_state.emotion_model.placeholders[0]
|
154 |
+
)
|
155 |
+
submit = form.form_submit_button('Submit')
|
156 |
+
if submit:
|
157 |
+
if text_input is None or len(text_input.strip()) == 0:
|
158 |
+
to_eval = st.session_state.emotion_model.placeholders[0]
|
159 |
+
else:
|
160 |
+
to_eval = text_input.strip()
|
161 |
+
st.write("You entered:")
|
162 |
+
st.markdown("> {}".format(to_eval))
|
163 |
+
st.write("Using the NLP model:")
|
164 |
+
st.markdown("> {}".format(st.session_state.emotion_model_name))
|
165 |
+
label, score = st.session_state.emotion_model.predict(to_eval)
|
166 |
+
st.markdown("#### Result:")
|
167 |
+
st.markdown("**{}**: {}".format(label,score))
|
168 |
+
|
169 |
+
elif st.session_state.page == "patent":
|
170 |
+
st.subheader("USPTO Patent Evaluation")
|
171 |
+
st.markdown("Below are two inputs - one for an **ABSTRACT** and another for a list of **CLAIMS**. Enter both and select the \"Submit\" button to evaluate the patenteability of your idea.")
|
172 |
+
|
173 |
+
patent_select_list = list(st.session_state.patent_data.keys())
|
174 |
+
patent_index_option = st.selectbox(
|
175 |
+
"Want to pre-populate with an existing patent? Select the index number of below.",
|
176 |
+
patent_select_list,
|
177 |
+
key="patent_num",
|
178 |
+
)
|
179 |
+
|
180 |
+
print(patent_index_option)
|
181 |
+
|
182 |
+
if "patent_abstract_model" not in st.session_state or "patent_claim_model" not in st.session_state:
|
183 |
+
st.write("Loading models...")
|
184 |
+
else:
|
185 |
+
with st.form(key='patent-form'):
|
186 |
+
col1, col2 = st.columns(2)
|
187 |
+
with col1:
|
188 |
+
abstract_input = st.text_area(
|
189 |
+
"Enter the abstract of the patent below",
|
190 |
+
placeholder=st.session_state.patent_data[st.session_state.patent_num]["abstract"],
|
191 |
+
height=400
|
192 |
+
)
|
193 |
+
with col2:
|
194 |
+
claim_input = st.text_area(
|
195 |
+
"Enter the claims of the patent below",
|
196 |
+
placeholder=st.session_state.patent_data[st.session_state.patent_num]["claim"],
|
197 |
+
height=400
|
198 |
+
)
|
199 |
+
weight_val = st.slider(
|
200 |
+
"How much do the abstract and claims weight when aggregating a total softmax score?",
|
201 |
+
min_value=-1.0,
|
202 |
+
max_value=1.0,
|
203 |
+
value=0.5,
|
204 |
+
)
|
205 |
+
submit = st.form_submit_button('Submit')
|
206 |
+
|
207 |
+
if submit:
|
208 |
+
|
209 |
+
is_custom = False
|
210 |
+
if abstract_input is None or len(abstract_input.strip()) == 0:
|
211 |
+
abstract_to_eval = st.session_state.patent_data[st.session_state.patent_num]["abstract"].strip()
|
212 |
+
else:
|
213 |
+
abstract_to_eval = abstract_input.strip()
|
214 |
+
is_custom = True
|
215 |
+
|
216 |
+
if claim_input is None or len(claim_input.strip()) == 0:
|
217 |
+
claim_to_eval = st.session_state.patent_data[st.session_state.patent_num]["claim"].strip()
|
218 |
+
else:
|
219 |
+
claim_to_eval = claim_input.strip()
|
220 |
+
is_custom = True
|
221 |
+
|
222 |
+
#tokenized_claim = st.session_state.patent_claim_model.tokenizer.encode(claim_to_eval, padding=True, truncation=True, max_length=512, add_special_tokens = True)
|
223 |
+
#untokenized_claim = st.session_state.patent_claim_model.tokenizer.decode(tokenized_claim)
|
224 |
+
#claim_to_eval2 = untokenized_claim.replace("[CLS]","")
|
225 |
+
#claim_to_eval2 = claim_to_eval2.replace("[SEP]","")
|
226 |
+
#print(claim_to_eval2)
|
227 |
+
|
228 |
+
abstract_response = st.session_state.patent_abstract_model.predict(abstract_to_eval)
|
229 |
+
claim_response = st.session_state.patent_claim_model.predict(claim_to_eval)
|
230 |
+
print(abstract_response[0])
|
231 |
+
print(claim_response[0])
|
232 |
+
print(weight_val)
|
233 |
+
|
234 |
+
claim_weight = (1+weight_val)/2
|
235 |
+
abstract_weight = 1-claim_weight
|
236 |
+
aggregate_score = [
|
237 |
+
{'label':'REJECTED','score':abstract_response[0][0]['score']*abstract_weight + claim_response[0][0]['score']*claim_weight},
|
238 |
+
{'label':'ACCEPTED','score':abstract_response[0][1]['score']*abstract_weight + claim_response[0][1]['score']*claim_weight}
|
239 |
+
]
|
240 |
+
aggregate_score_sorted = sorted(aggregate_score, key=lambda d: d['score'], reverse=True)
|
241 |
+
print(aggregate_score_sorted)
|
242 |
+
print(f'Original Rating: {st.session_state.patent_data[st.session_state.patent_num]["label"]}')
|
243 |
+
|
244 |
+
st.markdown("---")
|
245 |
+
answerCol1, answerCol2 = st.columns(2)
|
246 |
+
with answerCol1:
|
247 |
+
st.markdown("### Abstract Ratings")
|
248 |
+
st.markdown("""
|
249 |
+
> **Reject**: {}
|
250 |
+
> **Accept**: {}
|
251 |
+
""".format(abstract_response[0][0]["score"], abstract_response[0][1]["score"]))
|
252 |
+
with answerCol2:
|
253 |
+
st.markdown("### Claims Ratings")
|
254 |
+
st.markdown("""
|
255 |
+
> **Reject**: {}
|
256 |
+
> **Accept**: {}
|
257 |
+
""".format(claim_response[0][0]["score"], claim_response[0][1]["score"]))
|
258 |
+
|
259 |
+
st.markdown(f'### Final Rating: **{aggregate_score_sorted[0]["label"]}**')
|
260 |
+
st.markdown("""
|
261 |
+
> **Reject**: {}
|
262 |
+
> **Accept**: {}
|
263 |
+
""".format(aggregate_score[0]['score'], aggregate_score[1]['score']))
|
264 |
+
|
265 |
+
#if not is_custom:
|
266 |
+
# st.markdown('**Original Score:**')
|
267 |
+
# st.markdown(st.session_state.patent_data[st.session_state.patent_num]["label"])
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
|
273 |
+
else:
|
274 |
+
st.write("To get started, access the sidebar on the left (click the arrow in the top-left corner of the screen) and select a tool.")
|
275 |
|
276 |
+
st.write("")
|
277 |
+
st.write("")
|
|
|
|