Update app.py
Browse files
app.py
CHANGED
@@ -256,9 +256,16 @@ def run_streamlit_app():
|
|
256 |
azure_api_key = st.text_input("Azure API Key")
|
257 |
groq_api_key = st.text_input("Groq API Key")
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
with col2:
|
260 |
-
|
261 |
-
|
262 |
embedding_model_type = "HF"
|
263 |
embedding_model = st.selectbox("Select Embedding Model", ["BAAI/bge-large-en-v1.5", "other_model"])
|
264 |
retriever_method = st.selectbox("Select Retriever Method", ["Vector Search", "BM25", "BM25+Vector"])
|
@@ -270,7 +277,7 @@ def run_streamlit_app():
|
|
270 |
top_k = st.selectbox("Select Top K", [1, 2, 3, 5, 6], index=1)
|
271 |
|
272 |
if st.button("Initialize"):
|
273 |
-
initialize_apis(selected_api, selected_model, pinecone_api_key, groq_api_key, azure_api_key)
|
274 |
documents = load_pdf_data(chunk_size)
|
275 |
index, nodes = create_index(documents, embedding_model_type=embedding_model_type, embedding_model=embedding_model, retriever_method=retriever_method, chunk_size=chunk_size)
|
276 |
st.session_state.query_engine = setup_query_engine(index, response_mode="compact", nodes=nodes, query_engine_method=None, retriever_method=retriever_method, top_k=top_k)
|
@@ -325,7 +332,7 @@ def run_streamlit_app():
|
|
325 |
st.session_state.chat_history.append({'id': question_id, 'user': question, 'response': response.response, 'contexts': response.source_nodes, 'feedback': 0, 'detailed_feedback': '', 'timestamp': timestamp})
|
326 |
|
327 |
# Log initial query and response to Google Sheets without feedback
|
328 |
-
log_to_google_sheets([question_id, question, response.response, selected_api, selected_model, embedding_model, retriever_method, chunk_size, top_k, 0, "", timestamp])
|
329 |
|
330 |
st.rerun()
|
331 |
else:
|
|
|
256 |
azure_api_key = st.text_input("Azure API Key")
|
257 |
groq_api_key = st.text_input("Groq API Key")
|
258 |
|
259 |
+
def update_api_based_on_model():
|
260 |
+
selected_model = st.session_state['selected_model']
|
261 |
+
if selected_model == 'gpt35':
|
262 |
+
st.session_state['selected_api'] = 'azure'
|
263 |
+
else:
|
264 |
+
st.session_state['selected_api'] = 'groq'
|
265 |
+
|
266 |
with col2:
|
267 |
+
selected_model = st.selectbox("Select Model", ["llama3-8b", "llama3-70b", "mixtral-8x7b", "gemma-7b", "gpt35"], key='selected_model', on_change=update_api_based_on_model)
|
268 |
+
selected_api = st.selectbox("Select API", ["azure", "groq"], key='selected_api', disabled=True)
|
269 |
embedding_model_type = "HF"
|
270 |
embedding_model = st.selectbox("Select Embedding Model", ["BAAI/bge-large-en-v1.5", "other_model"])
|
271 |
retriever_method = st.selectbox("Select Retriever Method", ["Vector Search", "BM25", "BM25+Vector"])
|
|
|
277 |
top_k = st.selectbox("Select Top K", [1, 2, 3, 5, 6], index=1)
|
278 |
|
279 |
if st.button("Initialize"):
|
280 |
+
initialize_apis(st.session_state['selected_api'], selected_model, pinecone_api_key, groq_api_key, azure_api_key)
|
281 |
documents = load_pdf_data(chunk_size)
|
282 |
index, nodes = create_index(documents, embedding_model_type=embedding_model_type, embedding_model=embedding_model, retriever_method=retriever_method, chunk_size=chunk_size)
|
283 |
st.session_state.query_engine = setup_query_engine(index, response_mode="compact", nodes=nodes, query_engine_method=None, retriever_method=retriever_method, top_k=top_k)
|
|
|
332 |
st.session_state.chat_history.append({'id': question_id, 'user': question, 'response': response.response, 'contexts': response.source_nodes, 'feedback': 0, 'detailed_feedback': '', 'timestamp': timestamp})
|
333 |
|
334 |
# Log initial query and response to Google Sheets without feedback
|
335 |
+
log_to_google_sheets([question_id, question, response.response, st.session_state['selected_api'], selected_model, embedding_model, retriever_method, chunk_size, top_k, 0, "", timestamp])
|
336 |
|
337 |
st.rerun()
|
338 |
else:
|