File size: 23,675 Bytes
7dbf7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import asyncio
import json
import random
import re
import string
import time
import uuid
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional

import boto3
import httpx
import tiktoken
import platform
import hashlib
from fastapi import HTTPException

from api.config import (
    MODEL_MAPPING,
    get_headers_api_chat,
    get_headers_chat,
    BASE_URL,
    AGENT_MODE,
    TRENDING_AGENT_MODE,
    MODEL_PREFIXES
)
from api.logger import setup_logger
from api.models import ChatRequest
from api.validate import getHid  # Import the asynchronous getHid function

logger = setup_logger(__name__)

# ---------------------------------------------
#         CLOUDFLARE R2 CONFIGURATION
# ---------------------------------------------
R2_ACCESS_KEY_ID = "df9c9eb87e850a8eb27afd3968077b42"
R2_SECRET_ACCESS_KEY = "14b08b0855263bb63d2618da3a6537e1b0446d89d51da03a568620b1e5342ea8"
R2_ENDPOINT_URL = "https://f2f92ac53fae792c4155f6e93a514989.r2.cloudflarestorage.com"
R2_BUCKET_NAME = "snapzion"

# We always store replaced URLs in one file named snapzion.txt
R2_REPLACED_URLS_KEY = "snapzion.txt"

s3 = boto3.client(
    "s3",
    endpoint_url=R2_ENDPOINT_URL,
    aws_access_key_id=R2_ACCESS_KEY_ID,
    aws_secret_access_key=R2_SECRET_ACCESS_KEY,
)

# Example blocked message
BLOCKED_MESSAGE = (
    "Generated by BLACKBOX.AI, try unlimited chat https://www.blackbox.ai "
    "and for API requests replace https://www.blackbox.ai with https://api.blackbox.ai"
)

# ---------------------------------------------
#         RANDOM USER-DATA GENERATION
# ---------------------------------------------
def get_random_name_email_customer():
    """
    Generate a random name, email, and customer ID.
    The customer ID keeps the same length format as 'cus_Rldf7IKdNhdhiw'.
    """
    first_names = ["Alice", "Bob", "Carol", "David", "Evelyn", "Frank", "Grace", "Hector", "Ivy", "Jackie"]
    last_names = ["Smith", "Johnson", "Davis", "Miller", "Thompson", "Garcia", "Brown", "Wilson", "Martin", "Clark"]

    random_name = f"{random.choice(first_names)} {random.choice(last_names)}"
    email_username = ''.join(random.choices(string.ascii_lowercase + string.digits, k=8))
    random_email = f"{email_username}@gmail.com"
    suffix_length = len("Rldf7IKdNhdhiw")
    suffix_chars = string.ascii_letters + string.digits
    random_suffix = ''.join(random.choice(suffix_chars) for _ in range(suffix_length))
    random_customer_id = f"cus_{random_suffix}"

    return random_name, random_email, random_customer_id

# ---------------------------------------------
#         HELPER FUNCTIONS
# ---------------------------------------------
def generate_system_fingerprint() -> str:
    raw_data = f"{platform.node()}-{time.time()}-{uuid.uuid4()}"
    short_hash = hashlib.md5(raw_data.encode()).hexdigest()[:12]
    return f"fp_{short_hash}"

def get_last_user_prompt(messages: List[Any]) -> str:
    for msg in reversed(messages):
        if msg.role == "user":
            if isinstance(msg.content, str):
                return msg.content.strip()
            elif isinstance(msg.content, list):
                for item in msg.content:
                    if item.get("type") == "text":
                        return item.get("text", "").strip()
    return ""

def upload_replaced_urls_to_r2(urls: List[str], alt_text: str = "") -> None:
    if not urls:
        logger.info("No replaced or final Snapzion URLs to store. Skipping snapzion.txt update.")
        return

    existing_data = ""
    try:
        response = s3.get_object(Bucket=R2_BUCKET_NAME, Key=R2_REPLACED_URLS_KEY)
        existing_data = response['Body'].read().decode('utf-8')
        logger.info("Successfully read existing snapzion.txt from R2.")
    except s3.exceptions.NoSuchKey:
        logger.info("snapzion.txt does not exist yet. Will create a new one.")
    except Exception as e:
        logger.error(f"Error reading snapzion.txt from R2: {e}")

    alt_text = alt_text.strip()
    markdown_lines = [f"![{alt_text}]({url})" for url in urls]
    to_append = "\n".join(markdown_lines)

    if existing_data.strip():
        updated_content = existing_data + "\n" + to_append
    else:
        updated_content = to_append

    try:
        s3.put_object(
            Bucket=R2_BUCKET_NAME,
            Key=R2_REPLACED_URLS_KEY,
            Body=updated_content.encode("utf-8"),
            ContentType="text/plain",
        )
        logger.info(f"Appended {len(urls)} new URLs to snapzion.txt in R2 (in Markdown format).")
    except Exception as e:
        logger.error(f"Failed to upload replaced URLs to R2: {e}")

def calculate_tokens(text: str, model: str) -> int:
    try:
        encoding = tiktoken.encoding_for_model(model)
        tokens = encoding.encode(text)
        return len(tokens)
    except KeyError:
        logger.warning(f"Model '{model}' not supported by tiktoken for token counting. Using a generic method.")
        return len(text.split())

def create_chat_completion_data(
    content: str,
    model: str,
    timestamp: int,
    request_id: str,
    system_fingerprint: str,
    prompt_tokens: int = 0,
    completion_tokens: int = 0,
    finish_reason: Optional[str] = None,
    function_call: Optional[Dict] = None,
) -> Dict[str, Any]:
    usage = None
    if finish_reason == "stop":
        usage = {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "total_tokens": prompt_tokens + completion_tokens,
        }
    return {
        "id": request_id,
        "object": "chat.completion.chunk",
        "created": timestamp,
        "model": model,
        "system_fingerprint": system_fingerprint,
        "choices": [{
            "index": 0,
            "delta": {
                "content": content if not function_call else None,
                "role": "assistant",
                "function_call": function_call
            },
            "finish_reason": finish_reason
        }],
        "usage": usage,
    }

def message_to_dict(message, model_prefix: Optional[str] = None, tools: Optional[List[Dict]] = None) -> Dict[str, Any]:
    """
    Convert a ChatRequest message to a dict for the request payload.
    Supports function calling, images, and model prefixes.
    """
    content = ""
    images_data = []
    image_urls = []

    # Handle content based on type
    if isinstance(message.content, list):
        for item in message.content:
            if item.get("type") == "text":
                content = item.get("text", "").strip()
            elif item.get("type") == "image_url" and len(images_data) < 3:
                image_url = item.get("image_url", {}).get("url", "")
                if image_url:
                    # Generate unique file path (assuming .jpg, adjust if needed)
                    file_path = f"MultipleFiles/{uuid.uuid4().hex}.jpg"
                    images_data.append({"filePath": file_path, "contents": image_url})
                    image_urls.append({"image_url": {"url": image_url}})
    elif isinstance(message.content, str):
        content = message.content.strip()

    # Apply model prefix to text content
    if model_prefix and content:
        content = f"{model_prefix} {content}"

    # Create payload with both formats
    base_message = {"role": message.role, "content": content}
    if images_data:
        base_message["data"] = {
            "imageBase64": images_data[0]["contents"] if images_data else "",
            "fileText": "",
            "title": "snapshot",
            "imagesData": images_data
        }
        # Add additional image_url entries for testing
        for img in image_urls[1:]:  # Skip the first image (already in imageBase64)
            base_message["content"] = base_message.get("content", "")  # Preserve text
            base_message.setdefault("content", []).append(img)

    return base_message if images_data else {"role": message.role, "content": content}

def strip_model_prefix(content: str, model_prefix: Optional[str] = None) -> str:
    if model_prefix and content.startswith(model_prefix):
        logger.debug(f"Stripping prefix '{model_prefix}' from content.")
        return content[len(model_prefix):].strip()
    return content

# ---------------------------------------------
#    STREAMING RESPONSE HANDLER
# ---------------------------------------------
async def process_streaming_response(request: ChatRequest):
    system_fingerprint = generate_system_fingerprint()
    random_name, random_email, random_customer_id = get_random_name_email_customer()

    request_id = f"chatcmpl-{uuid.uuid4()}"
    logger.info(f"Processing request (stream) {request_id} - Model: {request.model}")

    agent_mode = AGENT_MODE.get(request.model, {})
    trending_agent_mode = TRENDING_AGENT_MODE.get(request.model, {})
    model_prefix = MODEL_PREFIXES.get(request.model, "")

    headers_api_chat = get_headers_api_chat(BASE_URL)

    if request.model == "o1-preview":
        delay_seconds = random.randint(1, 60)
        logger.info(f"Delay {delay_seconds}s for model 'o1-preview' (Request: {request_id})")
        await asyncio.sleep(delay_seconds)

    h_value = await getHid()
    if not h_value:
        logger.error("No h-value for validation.")
        raise HTTPException(status_code=500, detail="Missing h-value.")

    messages = [message_to_dict(msg, model_prefix=model_prefix, tools=request.tools) for msg in request.messages]

    json_data = {
        "agentMode": agent_mode,
        "clickedAnswer2": False,
        "clickedAnswer3": False,
        "clickedForceWebSearch": False,
        "codeInterpreterMode": False,
        "codeModelMode": True,
        "githubToken": "",
        "deepSearchMode": False,
        "domains": None,
        "id": request_id,
        "imageGenerationMode": False,
        "isChromeExt": False,
        "isMicMode": False,
        "isPremium": True,
        "isMemoryEnabled": False,
        "maxTokens": request.max_tokens,
        "messages": messages,
        "mobileClient": False,
        "playgroundTemperature": request.temperature,
        "playgroundTopP": request.top_p,
        "previewToken": None,
        "trendingAgentMode": trending_agent_mode,
        "userId": None,
        "userSelectedModel": MODEL_MAPPING.get(request.model, request.model),
        "userSystemPrompt": None,
        "validated": h_value,
        "visitFromDelta": False,
        "webSearchModePrompt": False,
        "vscodeClient": False,
        "customProfile": {"name": "", "occupation": "", "traits": [], "additionalInfo": "", "enableNewChats": False},
        "webSearchModeOption": {"autoMode": False, "webMode": False, "offlineMode": True},
        "session": {
            "user": {"name": random_name, "email": random_email, "image": "https://lh3.googleusercontent.com/a/...=s96-c", "subscriptionStatus": "PREMIUM"},
            "expires": datetime.now(timezone.utc).isoformat(timespec='milliseconds').replace('+00:00', 'Z'),
            "subscriptionCache": {"customerId": random_customer_id, "status": "PREMIUM", "isTrialSubscription": "False", "expiryTimestamp": 1744652408, "lastChecked": int(time.time() * 1000)},
            "beastMode": False,
            "reasoningMode": False,
            "designerMode": False,
            "workspaceId": "",
        },
    }

    prompt_tokens = 0
    for msg in messages:
        if "content" in msg:
            prompt_tokens += calculate_tokens(msg["content"], request.model)
        if "data" in msg and "imagesData" in msg["data"]:
            for image_data in msg["data"]["imagesData"]:
                prompt_tokens += calculate_tokens(image_data["contents"], request.model)

    completion_tokens = 0
    final_snapzion_links = []

    async with httpx.AsyncClient() as client:
        try:
            async with client.stream("POST", f"{BASE_URL}/api/chat", headers=headers_api_chat, json=json_data, timeout=100) as response:
                response.raise_for_status()
                async for chunk in response.aiter_text():
                    timestamp = int(datetime.now().timestamp())
                    if not chunk:
                        continue
                    if chunk.startswith("$@$v=undefined-rv1$@$"):
                        chunk = chunk[21:]
                    if BLOCKED_MESSAGE in chunk:
                        logger.info(f"Blocked message found in chunk (Request: {request_id}).")
                        chunk = chunk.replace(BLOCKED_MESSAGE, "").strip()
                        if not chunk:
                            continue
                    if "https://storage.googleapis.com" in chunk:
                        chunk = chunk.replace("https://storage.googleapis.com", "https://cdn.snapzion.com")
                    snapzion_urls = re.findall(r"(https://cdn\.snapzion\.com[^\s\)]+)", chunk)
                    if snapzion_urls:
                        final_snapzion_links.extend(snapzion_urls)
                    cleaned_content = strip_model_prefix(chunk, model_prefix)
                    completion_tokens += calculate_tokens(cleaned_content, request.model)
                    
                    # Handle function call responses
                    function_call = None
                    if cleaned_content and cleaned_content.startswith("{"):
                        try:
                            function_call = json.loads(cleaned_content)
                            cleaned_content = None  # Content must be null for function calls
                        except json.JSONDecodeError:
                            pass
                    
                    yield "data: " + json.dumps(create_chat_completion_data(
                        cleaned_content, 
                        request.model,
                        timestamp,
                        request_id,
                        system_fingerprint,
                        prompt_tokens,
                        completion_tokens,
                        finish_reason=None,
                        function_call=function_call
                    )) + "\n\n"
                yield "data: " + json.dumps(create_chat_completion_data("", request.model, timestamp, request_id, system_fingerprint, prompt_tokens, completion_tokens, "stop")) + "\n\n"
                yield "data: [DONE]\n\n"
        except httpx.HTTPStatusError as e:
            logger.error(f"HTTP error (stream) {request_id}: {e}")
            error_message = f"HTTP error occurred: {e}"
            try:
                error_details = e.response.json()
                error_message += f" Details: {error_details}"
            except ValueError:
                error_message += f" Response body: {e.response.text}"
            yield "data: " + json.dumps(create_chat_completion_data(error_message, request.model, int(datetime.now().timestamp()), request_id, system_fingerprint, prompt_tokens, completion_tokens, "error")) + "\n\n"
            yield "data: [DONE]\n\n"
        except httpx.RequestError as e:
            logger.error(f"Request error (stream) {request_id}: {e}")
            error_message = f"Request error occurred: {e}"
            yield "data: " + json.dumps(create_chat_completion_data(error_message, request.model, int(datetime.now().timestamp()), request_id, system_fingerprint, prompt_tokens, completion_tokens, "error")) + "\n\n"
            yield "data: [DONE]\n\n"
        except Exception as e:
            logger.error(f"Unhandled error (stream) {request_id}: {e}")
            error_message = f"An unexpected error occurred: {e}"
            yield "data: " + json.dumps(create_chat_completion_data(error_message, request.model, int(datetime.now().timestamp()), request_id, system_fingerprint, prompt_tokens, completion_tokens, "error")) + "\n\n"
            yield "data: [DONE]\n\n"

    last_user_prompt = get_last_user_prompt(request.messages)
    upload_replaced_urls_to_r2(final_snapzion_links, alt_text=last_user_prompt)

# ---------------------------------------------
#     NON-STREAMING RESPONSE HANDLER
# ---------------------------------------------
async def process_non_streaming_response(request: ChatRequest):
    system_fingerprint = generate_system_fingerprint()
    random_name, random_email, random_customer_id = get_random_name_email_customer()

    request_id = f"chatcmpl-{uuid.uuid4()}"
    logger.info(f"Processing request (non-stream) {request_id} - Model: {request.model}")

    agent_mode = AGENT_MODE.get(request.model, {})
    trending_agent_mode = TRENDING_AGENT_MODE.get(request.model, {})
    model_prefix = MODEL_PREFIXES.get(request.model, "")

    headers_api_chat = get_headers_api_chat(BASE_URL)
    headers_chat = get_headers_chat(BASE_URL, next_action=str(uuid.uuid4()), next_router_state_tree=json.dumps([""]))

    if request.model == "o1-preview":
        delay_seconds = random.randint(20, 60)
        logger.info(f"Delay {delay_seconds}s for 'o1-preview' (Request: {request_id})")
        await asyncio.sleep(delay_seconds)

    h_value = "00f37b34-a166-4efb-bce5-1312d87f2f94"
    if not h_value:
        logger.error("Failed to retrieve h-value.")
        raise HTTPException(status_code=500, detail="Missing h-value.")

    messages = [message_to_dict(msg, model_prefix=model_prefix, tools=request.tools) for msg in request.messages]

    json_data = {
        "agentMode": agent_mode,
        "clickedAnswer2": False,
        "clickedAnswer3": False,
        "clickedForceWebSearch": False,
        "codeInterpreterMode": False,
        "codeModelMode": True,
        "githubToken": "",
        "deepSearchMode": False,
        "domains": None,
        "id": request_id,
        "imageGenerationMode": False,
        "isChromeExt": False,
        "isMicMode": False,
        "isPremium": True,
        "isMemoryEnabled": False,
        "maxTokens": request.max_tokens,
        "messages": messages,
        "mobileClient": False,
        "playgroundTemperature": request.temperature,
        "playgroundTopP": request.top_p,
        "previewToken": None,
        "trendingAgentMode": trending_agent_mode,
        "userId": None,
        "userSelectedModel": MODEL_MAPPING.get(request.model, request.model),
        "userSystemPrompt": None,
        "validated": h_value,
        "visitFromDelta": False,
        "webSearchModePrompt": False,
        "vscodeClient": False,
        "customProfile": {"name": "", "occupation": "", "traits": [], "additionalInfo": "", "enableNewChats": False},
        "webSearchModeOption": {"autoMode": False, "webMode": False, "offlineMode": True},
        "session": {
            "user": {"name": random_name, "email": random_email, "image": "https://lh3.googleusercontent.com/a/...=s96-c", "subscriptionStatus": "PREMIUM"},
            "expires": datetime.now(timezone.utc).isoformat(timespec='milliseconds').replace('+00:00', 'Z'),
            "subscriptionCache": {"customerId": random_customer_id, "status": "PREMIUM", "isTrialSubscription": "False", "expiryTimestamp": 1744652408, "lastChecked": int(time.time() * 1000)},
            "beastMode": False,
            "reasoningMode": False,
            "designerMode": False,
            "workspaceId": "",
        },
    }

    prompt_tokens = 0
    for msg in messages:
        if "content" in msg:
            prompt_tokens += calculate_tokens(msg["content"], request.model)
        if "data" in msg and "imagesData" in msg["data"]:
            for image_data in msg["data"]["imagesData"]:
                prompt_tokens += calculate_tokens(image_data["contents"], request.model)

    full_response = ""
    final_snapzion_links = []

    async with httpx.AsyncClient() as client:
        try:
            async with client.stream("POST", f"{BASE_URL}/api/chat", headers=headers_api_chat, json=json_data) as response:
                response.raise_for_status()
                async for chunk in response.aiter_text():
                    full_response += chunk
        except httpx.HTTPStatusError as e:
            logger.error(f"HTTP error (non-stream) {request_id}: {e}")
            error_message = f"HTTP error occurred: {e}"
            try:
                error_details = e.response.json()
                error_message += f" Details: {error_details}"
            except ValueError:
                error_message += f" Response body: {e.response.text}"
            return {
                "id": request_id,
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "system_fingerprint": system_fingerprint,
                "choices": [{"index": 0, "message": {"role": "assistant", "content": error_message}, "finish_reason": "error"}],
                "usage": {"prompt_tokens": prompt_tokens, "completion_tokens": 0, "total_tokens": prompt_tokens},
            }
        except httpx.RequestError as e:
            logger.error(f"Request error (non-stream) {request_id}: {e}")
            error_message = f"Request error occurred: {e}"
            return {
                "id": request_id,
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "system_fingerprint": system_fingerprint,
                "choices": [{"index": 0, "message": {"role": "assistant", "content": error_message}, "finish_reason": "error"}],
                "usage": {"prompt_tokens": prompt_tokens, "completion_tokens": 0, "total_tokens": prompt_tokens},
            }
        except Exception as e:
            logger.error(f"Unexpected error (non-stream) {request_id}: {e}")
            error_message = f"An unexpected error occurred: {e}"
            return {
                "id": request_id,
                "object": "chat.completion",
                "created": int(datetime.now().timestamp()),
                "model": request.model,
                "system_fingerprint": system_fingerprint,
                "choices": [{"index": 0, "message": {"role": "assistant", "content": error_message}, "finish_reason": "error"}],
                "usage": {"prompt_tokens": prompt_tokens, "completion_tokens": 0, "total_tokens": prompt_tokens},
            }

    if full_response.startswith("$@$v=undefined-rv1$@$"):
        full_response = full_response[21:]
    if BLOCKED_MESSAGE in full_response:
        full_response = full_response.replace(BLOCKED_MESSAGE, "").strip()
        if not full_response:
            raise HTTPException(status_code=500, detail="Blocked message in response.")
    if "https://storage.googleapis.com" in full_response:
        full_response = full_response.replace("https://storage.googleapis.com", "https://cdn.snapzion.com")
    snapzion_urls = re.findall(r"(https://cdn\.snapzion\.com[^\s\)]+)", full_response)
    for link in snapzion_urls:
        final_snapzion_links.append(link)
    cleaned_full_response = strip_model_prefix(full_response, model_prefix)
    completion_tokens = calculate_tokens(cleaned_full_response, request.model)
    last_user_prompt = get_last_user_prompt(request.messages)
    upload_replaced_urls_to_r2(final_snapzion_links, alt_text=last_user_prompt)

    return {
        "id": request_id,
        "object": "chat.completion",
        "created": int(datetime.now().timestamp()),
        "model": request.model,
        "system_fingerprint": system_fingerprint,
        "choices": [{"index": 0, "message": {"role": "assistant", "content": cleaned_full_response}, "finish_reason": "stop"}],
        "usage": {"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens, "total_tokens": prompt_tokens + completion_tokens},
    }