Test101 / api /utils.py
rkihacker's picture
Update api/utils.py
27a18c4 verified
from datetime import datetime
import json
import uuid
import asyncio
import random
import string
from typing import Any, Dict, Optional
import httpx
from fastapi import HTTPException
from api.config import (
MODEL_MAPPING,
get_headers_api_chat,
get_headers_chat,
BASE_URL,
AGENT_MODE,
TRENDING_AGENT_MODE,
MODEL_PREFIXES,
MODEL_REFERERS
)
from api.models import ChatRequest
from api.logger import setup_logger
from api.validate import getHid # Import the asynchronous getHid function
import tiktoken
logger = setup_logger(__name__)
# Define the blocked message
BLOCKED_MESSAGE = "Generated by BLACKBOX.AI, try unlimited chat https://www.blackbox.ai and for API requests replace https://www.blackbox.ai with https://api.blackbox.ai"
# Function to calculate tokens using tiktoken
def calculate_tokens(text: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model)
tokens = encoding.encode(text)
return len(tokens)
except KeyError:
# Handle the case where the model is not supported by tiktoken
logger.warning(f"Model '{model}' not supported by tiktoken for token counting. Using a generic method.")
return len(text.split())
# Helper function to create chat completion data
def create_chat_completion_data(
content: str, model: str, timestamp: int, request_id: str, prompt_tokens: int = 0, completion_tokens: int = 0, finish_reason: Optional[str] = None
) -> Dict[str, Any]:
if finish_reason == "stop":
usage = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
else:
usage = None
return {
"id": request_id,
"object": "chat.completion.chunk",
"created": timestamp,
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": usage,
}
# Function to convert message to dictionary format, ensuring base64 data and optional model prefix
def message_to_dict(message, model_prefix: Optional[str] = None):
content = message.content if isinstance(message.content, str) else message.content[0]["text"]
if model_prefix:
content = f"{model_prefix} {content}"
if isinstance(message.content, list) and len(message.content) == 2 and "image_url" in message.content[1]:
# Ensure base64 images are always included for all models
image_base64 = message.content[1]["image_url"]["url"]
return {
"role": message.role,
"content": content,
"data": {
"imageBase64": image_base64,
"fileText": "",
"title": "snapshot",
# Added imagesData field here
"imagesData": [
{
"filePath": f"MultipleFiles/{uuid.uuid4().hex}.jpg",
"contents": image_base64
}
],
},
}
return {"role": message.role, "content": content}
# Function to strip model prefix from content if present
def strip_model_prefix(content: str, model_prefix: Optional[str] = None) -> str:
"""Remove the model prefix from the response content if present."""
if model_prefix and content.startswith(model_prefix):
logger.debug(f"Stripping prefix '{model_prefix}' from content.")
return content[len(model_prefix):].strip()
return content
# Process streaming response with headers from config.py
async def process_streaming_response(request: ChatRequest):
# Generate a unique ID for this request
request_id = f"chatcmpl-{uuid.uuid4()}"
logger.info(f"Processing request with ID: {request_id} - Model: {request.model}")
# Get the appropriate configuration for the requested model
agent_mode = AGENT_MODE.get(request.model, {})
trending_agent_mode = TRENDING_AGENT_MODE.get(request.model, {})
model_prefix = MODEL_PREFIXES.get(request.model, "")
# Adjust headers_api_chat since referer_url is removed
headers_api_chat = get_headers_api_chat(BASE_URL)
if request.model == 'o1-preview':
delay_seconds = random.randint(1, 60)
logger.info(
f"Introducing a delay of {delay_seconds} seconds for model 'o1-preview' "
f"(Request ID: {request_id})"
)
await asyncio.sleep(delay_seconds)
# Fetch the h-value for the 'validated' field
h_value = await getHid()
if not h_value:
logger.error("Failed to retrieve h-value for validation.")
raise HTTPException(
status_code=500, detail="Validation failed due to missing h-value."
)
messages = [
message_to_dict(msg, model_prefix=model_prefix) for msg in request.messages
]
json_data = {
"agentMode": agent_mode,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"codeModelMode": True,
"githubToken": None,
"id": request_id,
"isChromeExt": False,
"isMicMode": False,
"maxTokens": request.max_tokens,
"messages": messages,
"mobileClient": False,
"playgroundTemperature": request.temperature,
"playgroundTopP": request.top_p,
"previewToken": None,
"trendingAgentMode": trending_agent_mode,
"userId": None,
"userSelectedModel": MODEL_MAPPING.get(request.model, request.model),
"userSystemPrompt": None,
"validated": h_value, # Dynamically set the validated field
"visitFromDelta": False,
"webSearchModePrompt": False,
"imageGenerationMode": False, # Added this line
}
prompt_tokens = 0
for message in messages:
if 'content' in message:
prompt_tokens += calculate_tokens(message['content'], request.model)
if 'data' in message and 'imageBase64' in message['data']:
prompt_tokens += calculate_tokens(message['data']['imageBase64'], request.model)
completion_tokens = 0
async with httpx.AsyncClient() as client:
try:
async with client.stream(
"POST",
f"{BASE_URL}/api/chat",
headers=headers_api_chat,
json=json_data,
timeout=100,
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
timestamp = int(datetime.now().timestamp())
if chunk:
content = chunk
if content.startswith("$@$v=undefined-rv1$@$"):
content = content[21:]
# Remove the blocked message if present
if BLOCKED_MESSAGE in content:
logger.info(
f"Blocked message detected in response for Request ID {request_id}."
)
content = content.replace(BLOCKED_MESSAGE, '').strip()
if not content:
continue # Skip if content is empty after removal
cleaned_content = strip_model_prefix(content, model_prefix)
completion_tokens += calculate_tokens(cleaned_content, request.model)
yield f"data: {json.dumps(create_chat_completion_data(cleaned_content, request.model, timestamp, request_id))}\n\n"
yield f"data: {json.dumps(create_chat_completion_data('', request.model, timestamp, request_id, prompt_tokens, completion_tokens, 'stop'))}\n\n"
yield "data: [DONE]\n\n"
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error occurred for Request ID {request_id}: {e}")
error_message = f"HTTP error occurred: {e}"
try:
error_details = e.response.json()
error_message += f" Details: {error_details}"
except ValueError:
error_message += f" Response body: {e.response.text}"
yield f"data: {json.dumps(create_chat_completion_data(error_message, request.model, timestamp, request_id, prompt_tokens, completion_tokens, 'error'))}\n\n"
yield "data: [DONE]\n\n"
# raise HTTPException(status_code=e.response.status_code, detail=error_message)
except httpx.RequestError as e:
logger.error(
f"Error occurred during request for Request ID {request_id}: {e}"
)
error_message = f"Request error occurred: {e}"
yield f"data: {json.dumps(create_chat_completion_data(error_message, request.model, timestamp, request_id, prompt_tokens, completion_tokens, 'error'))}\n\n"
yield "data: [DONE]\n\n"
# raise HTTPException(status_code=500, detail=error_message)
except Exception as e:
logger.error(f"An unexpected error occurred for Request ID {request_id}: {e}")
error_message = f"An unexpected error occurred: {e}"
yield f"data: {json.dumps(create_chat_completion_data(error_message, request.model, timestamp, request_id, prompt_tokens, completion_tokens, 'error'))}\n\n"
yield "data: [DONE]\n\n"
# raise HTTPException(status_code=500, detail=error_message)
# Process non-streaming response with headers from config.py
async def process_non_streaming_response(request: ChatRequest):
# Generate a unique ID for this request
request_id = f"chatcmpl-{uuid.uuid4()}"
logger.info(f"Processing request with ID: {request_id} - Model: {request.model}")
# Get the appropriate configuration for the requested model
agent_mode = AGENT_MODE.get(request.model, {})
trending_agent_mode = TRENDING_AGENT_MODE.get(request.model, {})
model_prefix = MODEL_PREFIXES.get(request.model, "")
# Adjust headers_api_chat and headers_chat since referer_url is removed
headers_api_chat = get_headers_api_chat(BASE_URL)
headers_chat = get_headers_chat(
BASE_URL,
next_action=str(uuid.uuid4()),
next_router_state_tree=json.dumps([""]),
)
if request.model == 'o1-preview':
delay_seconds = random.randint(20, 60)
logger.info(
f"Introducing a delay of {delay_seconds} seconds for model 'o1-preview' "
f"(Request ID: {request_id})"
)
await asyncio.sleep(delay_seconds)
# Fetch the h-value for the 'validated' field
h_value = "00f37b34-a166-4efb-bce5-1312d87f2f94"
if not h_value:
logger.error("Failed to retrieve h-value for validation.")
raise HTTPException(
status_code=500, detail="Validation failed due to missing h-value."
)
messages = [
message_to_dict(msg, model_prefix=model_prefix) for msg in request.messages
]
json_data = {
"agentMode": agent_mode,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"codeModelMode": True,
"githubToken": None,
"id": request_id,
"isChromeExt": False,
"isMicMode": False,
"maxTokens": request.max_tokens,
"messages": messages,
"mobileClient": False,
"playgroundTemperature": request.temperature,
"playgroundTopP": request.top_p,
"previewToken": None,
"trendingAgentMode": trending_agent_mode,
"userId": None,
"userSelectedModel": MODEL_MAPPING.get(request.model, request.model),
"userSystemPrompt": None,
"validated": h_value, # Dynamically set the validated field
"visitFromDelta": False,
"webSearchModePrompt": False,
"imageGenerationMode": False, # Added this line
}
prompt_tokens = 0
for message in messages:
if 'content' in message:
prompt_tokens += calculate_tokens(message['content'], request.model)
if 'data' in message and 'imageBase64' in message['data']:
prompt_tokens += calculate_tokens(message['data']['imageBase64'], request.model)
full_response = ""
async with httpx.AsyncClient() as client:
try:
async with client.stream(
method="POST",
url=f"{BASE_URL}/api/chat",
headers=headers_api_chat,
json=json_data,
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
full_response += chunk
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error occurred for Request ID {request_id}: {e}")
error_message = f"HTTP error occurred: {e}"
try:
error_details = e.response.json()
error_message += f" Details: {error_details}"
except ValueError:
error_message += f" Response body: {e.response.text}"
return {
"id": request_id,
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": error_message},
"finish_reason": "error",
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": 0,
"total_tokens": prompt_tokens,
},
}
except httpx.RequestError as e:
logger.error(
f"Error occurred during request for Request ID {request_id}: {e}"
)
error_message = f"Request error occurred: {e}"
return {
"id": request_id,
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": error_message},
"finish_reason": "error",
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": 0,
"total_tokens": prompt_tokens,
},
}
except Exception as e:
logger.error(f"An unexpected error occurred for Request ID {request_id}: {e}")
error_message = f"An unexpected error occurred: {e}"
return {
"id": request_id,
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": error_message},
"finish_reason": "error",
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": 0,
"total_tokens": prompt_tokens,
},
}
if full_response.startswith("$@$v=undefined-rv1$@$"):
full_response = full_response[21:]
# Remove the blocked message if present
if BLOCKED_MESSAGE in full_response:
logger.info(
f"Blocked message detected in response for Request ID {request_id}."
)
full_response = full_response.replace(BLOCKED_MESSAGE, '').strip()
if not full_response:
raise HTTPException(
status_code=500, detail="Blocked message detected in response."
)
cleaned_full_response = strip_model_prefix(full_response, model_prefix)
completion_tokens = calculate_tokens(cleaned_full_response, request.model)
return {
"id": request_id,
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": cleaned_full_response},
"finish_reason": "stop",
}
],
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
}