File size: 7,273 Bytes
644b248
61c2d32
 
 
 
80ccb59
 
 
61c2d32
 
 
80ccb59
61c2d32
80ccb59
 
 
61c2d32
 
 
 
 
 
 
 
 
 
983b029
 
61c2d32
 
4405af8
61c2d32
 
 
 
 
 
 
 
 
80ccb59
983b029
80ccb59
 
 
 
 
983b029
80ccb59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c2d32
80ccb59
 
 
 
 
644b248
80ccb59
 
61c2d32
 
 
80ccb59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ccb59
61c2d32
 
 
80ccb59
61c2d32
80ccb59
61c2d32
 
 
80ccb59
61c2d32
983b029
 
61c2d32
 
 
80ccb59
4405af8
80ccb59
 
61c2d32
80ccb59
61c2d32
 
4405af8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import spaces
import os
import sys
import time
from pathlib import Path
from omegaconf import OmegaConf
from glob import glob
from os.path import join as opj

import gradio as gr
from PIL import Image
import torch

from utils_stableviton import get_mask_location, get_batch, tensor2img
from cldm.model import create_model
from cldm.plms_hacked import PLMSSampler

PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))

from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose

os.environ['GRADIO_TEMP_DIR'] = './tmp'  # TODO: turn off when final upload

IMG_H = 512
IMG_W = 384

openpose_model_hd = OpenPose(0)
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
parsing_model_hd = Parsing(0)
densepose_model_hd = DensePose4Gradio(
    cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml',
    model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
)

category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']

# #### model init >>>>
config = OmegaConf.load("./configs/VITON.yaml")
config.model.params.img_H = IMG_H
config.model.params.img_W = IMG_W
params = config.model.params

model = create_model(config_path=None, config=config)
model.load_state_dict(torch.load("./checkpoints/VITONHD.ckpt", map_location="cpu")["state_dict"])
model = model.cuda()
model.eval()
sampler = PLMSSampler(model)
# #### model init <<<<
def stable_viton_model_hd(
        batch,
        n_steps,
):
    z, cond = model.get_input(batch, params.first_stage_key)
    bs = z.shape[0]
    c_crossattn = cond["c_crossattn"][0][:bs]
    if c_crossattn.ndim == 4:
        c_crossattn = model.get_learned_conditioning(c_crossattn)
        cond["c_crossattn"] = [c_crossattn]
    uc_cross = model.get_unconditional_conditioning(bs)
    uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
    uc_full["first_stage_cond"] = cond["first_stage_cond"]
    for k, v in batch.items():
        if isinstance(v, torch.Tensor):
            batch[k] = v.cuda()
    sampler.model.batch = batch

    ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
    start_code = model.q_sample(z, ts)     

    output, _, _ = sampler.sample(
        n_steps,
        bs,
        (4, IMG_H//8, IMG_W//8),
        cond,
        x_T=start_code, 
        verbose=False,
        eta=0.0,
        unconditional_conditioning=uc_full,       
    )

    output = model.decode_first_stage(output)
    output = tensor2img(output)
    pil_output = Image.fromarray(output)
    return pil_output
    
@spaces.GPU  # TODO: turn on when final upload
@torch.no_grad()
def process_hd(vton_img, garm_img, n_steps):
    model_type = 'hd'
    category = 0  # 0:upperbody; 1:lowerbody; 2:dress

    stt = time.time()
    print('load images... ', end='')
    garm_img = Image.open(garm_img).resize((IMG_W, IMG_H))
    vton_img = Image.open(vton_img).resize((IMG_W, IMG_H))
    print('%.2fs' % (time.time() - stt))

    stt = time.time()
    print('get agnostic map... ', end='')
    keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H)))
    model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H)))
    mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
    mask = mask.resize((IMG_W, IMG_H), Image.NEAREST)
    mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST)
    masked_vton_img = Image.composite(mask_gray, vton_img, mask)  # agnostic map
    print('%.2fs' % (time.time() - stt))

    stt = time.time()
    print('get densepose... ', end='')
    vton_img = vton_img.resize((IMG_W, IMG_H))  # size for densepose
    densepose = densepose_model_hd.execute(vton_img)  # densepose
    print('%.2fs' % (time.time() - stt))

    batch = get_batch(
        vton_img, 
        garm_img, 
        densepose, 
        masked_vton_img, 
        mask, 
        IMG_H, 
        IMG_W
    )
    
    sample = stable_viton_model_hd(
        batch,
        n_steps
    )
    return sample


example_path = opj(os.path.dirname(__file__), 'examples')
example_model_ps = sorted(glob(opj(example_path, "model/*")))
example_garment_ps = sorted(glob(opj(example_path, "garment/*")))

with gr.Blocks(css='style.css') as demo:
    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <div>
                <h1>StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
                <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                    <a href='https://arxiv.org/abs/2312.01725'>
                        <img src="https://img.shields.io/badge/arXiv-2312.01725-red">
                    </a>
                    &nbsp;
                    <a href='https://rlawjdghek.github.io/StableVITON/'>
                        <img src='https://img.shields.io/badge/page-github.io-blue.svg'>
                    </a>
                    &nbsp;
                    <a href='https://github.com/rlawjdghek/StableVITON'>
                        <img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'>
                    </a>
                    &nbsp;
                    <a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'>
                        <img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'>
                    </a>
                </div>
            </div>
        </div>
        """
    )
    with gr.Row():
        gr.Markdown("## Experience virtual try-on with your own images!")
    with gr.Row():
        with gr.Column():
            vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0])
            example = gr.Examples(
                inputs=vton_img,
                examples_per_page=14,
                examples=example_model_ps)
        with gr.Column():
            garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0])
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=14,
                examples=example_garment_ps)
        with gr.Column():
            result_gallery = gr.Image(label='Output', show_label=False, preview=True, scale=1)
            # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
    with gr.Column():
        run_button = gr.Button(value="Run")
        # TODO: change default values (important!)
        # n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
        n_steps = gr.Slider(label="Steps", minimum=20, maximum=70, value=25, step=1)
        # guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
        # seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)

    ips = [vton_img, garm_img, n_steps]
    run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])

demo.queue().launch(share=True)