File size: 6,330 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

from typing import Any, Dict, List
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import CfgNode
from detectron2.structures import Instances

from densepose.data.meshes.catalog import MeshCatalog
from densepose.modeling.cse.utils import normalize_embeddings, squared_euclidean_distance_matrix
from densepose.structures.mesh import create_mesh

from .embed_utils import PackedCseAnnotations
from .utils import BilinearInterpolationHelper


class SoftEmbeddingLoss:
    """
    Computes losses for estimated embeddings given annotated vertices.
    Instances in a minibatch that correspond to the same mesh are grouped
    together. For each group, loss is computed as cross-entropy for
    unnormalized scores given ground truth mesh vertex ids.
    Scores are based on:
     1) squared distances between estimated vertex embeddings
        and mesh vertex embeddings;
     2) geodesic distances between vertices of a mesh
    """

    def __init__(self, cfg: CfgNode):
        """
        Initialize embedding loss from config
        """
        self.embdist_gauss_sigma = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDING_DIST_GAUSS_SIGMA
        self.geodist_gauss_sigma = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.GEODESIC_DIST_GAUSS_SIGMA

    def __call__(
        self,
        proposals_with_gt: List[Instances],
        densepose_predictor_outputs: Any,
        packed_annotations: PackedCseAnnotations,
        interpolator: BilinearInterpolationHelper,
        embedder: nn.Module,
    ) -> Dict[int, torch.Tensor]:
        """
        Produces losses for estimated embeddings given annotated vertices.
        Embeddings for all the vertices of a mesh are computed by the embedder.
        Embeddings for observed pixels are estimated by a predictor.
        Losses are computed as cross-entropy for unnormalized scores given
        ground truth vertex IDs.
         1) squared distances between estimated vertex embeddings
            and mesh vertex embeddings;
         2) geodesic distances between vertices of a mesh

        Args:
            proposals_with_gt (list of Instances): detections with associated
                ground truth data; each item corresponds to instances detected
                on 1 image; the number of items corresponds to the number of
                images in a batch
            densepose_predictor_outputs: an object of a dataclass that contains predictor
                outputs with estimated values; assumed to have the following attributes:
                * embedding - embedding estimates, tensor of shape [N, D, S, S], where
                  N = number of instances (= sum N_i, where N_i is the number of
                      instances on image i)
                  D = embedding space dimensionality (MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE)
                  S = output size (width and height)
            packed_annotations (PackedCseAnnotations): contains various data useful
                for loss computation, each data is packed into a single tensor
            interpolator (BilinearInterpolationHelper): bilinear interpolation helper
            embedder (nn.Module): module that computes vertex embeddings for different meshes
        Return:
            dict(int -> tensor): losses for different mesh IDs
        """
        losses = {}
        for mesh_id_tensor in packed_annotations.vertex_mesh_ids_gt.unique():
            mesh_id = mesh_id_tensor.item()
            mesh_name = MeshCatalog.get_mesh_name(mesh_id)
            # valid points are those that fall into estimated bbox
            # and correspond to the current mesh
            j_valid = interpolator.j_valid * (  # pyre-ignore[16]
                packed_annotations.vertex_mesh_ids_gt == mesh_id
            )
            if not torch.any(j_valid):
                continue
            # extract estimated embeddings for valid points
            # -> tensor [J, D]
            vertex_embeddings_i = normalize_embeddings(
                interpolator.extract_at_points(
                    densepose_predictor_outputs.embedding,
                    slice_fine_segm=slice(None),
                    w_ylo_xlo=interpolator.w_ylo_xlo[:, None],  # pyre-ignore[16]
                    w_ylo_xhi=interpolator.w_ylo_xhi[:, None],  # pyre-ignore[16]
                    w_yhi_xlo=interpolator.w_yhi_xlo[:, None],  # pyre-ignore[16]
                    w_yhi_xhi=interpolator.w_yhi_xhi[:, None],  # pyre-ignore[16]
                )[j_valid, :]
            )
            # extract vertex ids for valid points
            # -> tensor [J]
            vertex_indices_i = packed_annotations.vertex_ids_gt[j_valid]
            # embeddings for all mesh vertices
            # -> tensor [K, D]
            mesh_vertex_embeddings = embedder(mesh_name)
            # softmax values of geodesic distances for GT mesh vertices
            # -> tensor [J, K]
            mesh = create_mesh(mesh_name, mesh_vertex_embeddings.device)
            geodist_softmax_values = F.softmax(
                mesh.geodists[vertex_indices_i] / (-self.geodist_gauss_sigma), dim=1
            )
            # logsoftmax values for valid points
            # -> tensor [J, K]
            embdist_logsoftmax_values = F.log_softmax(
                squared_euclidean_distance_matrix(vertex_embeddings_i, mesh_vertex_embeddings)
                / (-self.embdist_gauss_sigma),
                dim=1,
            )
            losses[mesh_name] = (-geodist_softmax_values * embdist_logsoftmax_values).sum(1).mean()

        for mesh_name in embedder.mesh_names:
            if mesh_name not in losses:
                losses[mesh_name] = self.fake_value(
                    densepose_predictor_outputs, embedder, mesh_name
                )
        return losses

    def fake_values(self, densepose_predictor_outputs: Any, embedder: nn.Module):
        losses = {}
        for mesh_name in embedder.mesh_names:
            losses[mesh_name] = self.fake_value(densepose_predictor_outputs, embedder, mesh_name)
        return losses

    def fake_value(self, densepose_predictor_outputs: Any, embedder: nn.Module, mesh_name: str):
        return densepose_predictor_outputs.embedding.sum() * 0 + embedder(mesh_name).sum() * 0