File size: 6,973 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) Facebook, Inc. and its affiliates.

import copy
import numpy as np
import os
import unittest
import pycocotools.mask as mask_util

from detectron2.data import MetadataCatalog, detection_utils
from detectron2.data import transforms as T
from detectron2.structures import BitMasks, BoxMode
from detectron2.utils.file_io import PathManager


class TestTransformAnnotations(unittest.TestCase):
    def test_transform_simple_annotation(self):
        transforms = T.TransformList([T.HFlipTransform(400)])
        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "category_id": 3,
            "segmentation": [[10, 10, 100, 100, 100, 10], [150, 150, 200, 150, 200, 200]],
        }

        output = detection_utils.transform_instance_annotations(anno, transforms, (400, 400))
        self.assertTrue(np.allclose(output["bbox"], [200, 10, 390, 300]))
        self.assertEqual(len(output["segmentation"]), len(anno["segmentation"]))
        self.assertTrue(np.allclose(output["segmentation"][0], [390, 10, 300, 100, 300, 10]))

        detection_utils.annotations_to_instances([output, output], (400, 400))

    def test_transform_empty_annotation(self):
        detection_utils.annotations_to_instances([], (400, 400))

    def test_flip_keypoints(self):
        transforms = T.TransformList([T.HFlipTransform(400)])
        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "keypoints": np.random.rand(17, 3) * 50 + 15,
        }

        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno),
            transforms,
            (400, 400),
            keypoint_hflip_indices=detection_utils.create_keypoint_hflip_indices(
                ["keypoints_coco_2017_train"]
            ),
        )
        # The first keypoint is nose
        self.assertTrue(np.allclose(output["keypoints"][0, 0], 400 - anno["keypoints"][0, 0]))
        # The last 16 keypoints are 8 left-right pairs
        self.assertTrue(
            np.allclose(
                output["keypoints"][1:, 0].reshape(-1, 2)[:, ::-1],
                400 - anno["keypoints"][1:, 0].reshape(-1, 2),
            )
        )
        self.assertTrue(
            np.allclose(
                output["keypoints"][1:, 1:].reshape(-1, 2, 2)[:, ::-1, :],
                anno["keypoints"][1:, 1:].reshape(-1, 2, 2),
            )
        )

    def test_crop(self):
        transforms = T.TransformList([T.CropTransform(300, 300, 10, 10)])
        keypoints = np.random.rand(17, 3) * 50 + 15
        keypoints[:, 2] = 2
        anno = {
            "bbox": np.asarray([10, 10, 200, 400]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "keypoints": keypoints,
        }

        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno), transforms, (10, 10)
        )
        # box is shifted and cropped
        self.assertTrue((output["bbox"] == np.asarray([0, 0, 0, 10])).all())
        # keypoints are no longer visible
        self.assertTrue((output["keypoints"][:, 2] == 0).all())

    def test_transform_RLE(self):
        transforms = T.TransformList([T.HFlipTransform(400)])
        mask = np.zeros((300, 400), order="F").astype("uint8")
        mask[:, :200] = 1

        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "segmentation": mask_util.encode(mask[:, :, None])[0],
            "category_id": 3,
        }
        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno), transforms, (300, 400)
        )
        mask = output["segmentation"]
        self.assertTrue((mask[:, 200:] == 1).all())
        self.assertTrue((mask[:, :200] == 0).all())

        inst = detection_utils.annotations_to_instances(
            [output, output], (400, 400), mask_format="bitmask"
        )
        self.assertTrue(isinstance(inst.gt_masks, BitMasks))

    def test_transform_RLE_resize(self):
        transforms = T.TransformList(
            [T.HFlipTransform(400), T.ScaleTransform(300, 400, 400, 400, "bilinear")]
        )
        mask = np.zeros((300, 400), order="F").astype("uint8")
        mask[:, :200] = 1

        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "segmentation": mask_util.encode(mask[:, :, None])[0],
            "category_id": 3,
        }
        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno), transforms, (400, 400)
        )

        inst = detection_utils.annotations_to_instances(
            [output, output], (400, 400), mask_format="bitmask"
        )
        self.assertTrue(isinstance(inst.gt_masks, BitMasks))

    def test_gen_crop(self):
        instance = {"bbox": [10, 10, 100, 100], "bbox_mode": BoxMode.XYXY_ABS}
        t = detection_utils.gen_crop_transform_with_instance((10, 10), (150, 150), instance)
        # the box center must fall into the cropped region
        self.assertTrue(t.x0 <= 55 <= t.x0 + t.w)

    def test_gen_crop_outside_boxes(self):
        instance = {"bbox": [10, 10, 100, 100], "bbox_mode": BoxMode.XYXY_ABS}
        with self.assertRaises(AssertionError):
            detection_utils.gen_crop_transform_with_instance((10, 10), (15, 15), instance)

    def test_read_sem_seg(self):
        cityscapes_dir = MetadataCatalog.get("cityscapes_fine_sem_seg_val").gt_dir
        sem_seg_gt_path = os.path.join(
            cityscapes_dir, "frankfurt", "frankfurt_000001_083852_gtFine_labelIds.png"
        )
        if not PathManager.exists(sem_seg_gt_path):
            raise unittest.SkipTest(
                "Semantic segmentation ground truth {} not found.".format(sem_seg_gt_path)
            )
        sem_seg = detection_utils.read_image(sem_seg_gt_path, "L")
        self.assertEqual(sem_seg.ndim, 3)
        self.assertEqual(sem_seg.shape[2], 1)
        self.assertEqual(sem_seg.dtype, np.uint8)
        self.assertEqual(sem_seg.max(), 32)
        self.assertEqual(sem_seg.min(), 1)

    def test_read_exif_orientation(self):
        # https://github.com/recurser/exif-orientation-examples/raw/master/Landscape_5.jpg
        URL = "detectron2://assets/Landscape_5.jpg"
        img = detection_utils.read_image(URL, "RGB")
        self.assertEqual(img.ndim, 3)
        self.assertEqual(img.dtype, np.uint8)
        self.assertEqual(img.shape, (1200, 1800, 3))  # check that shape is not transposed

    def test_opencv_exif_orientation(self):
        import cv2

        URL = "detectron2://assets/Landscape_5.jpg"
        with PathManager.open(URL, "rb") as f:
            img = cv2.imdecode(np.frombuffer(f.read(), dtype="uint8"), cv2.IMREAD_COLOR)
        self.assertEqual(img.dtype, np.uint8)
        self.assertEqual(img.shape, (1200, 1800, 3))


if __name__ == "__main__":
    unittest.main()