Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,382 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# Copyright (c) Facebook, Inc. and its affiliates.
# -*- coding: utf-8 -*-
import copy
import os
import tempfile
import unittest
import torch
from torch.hub import _check_module_exists
from detectron2 import model_zoo
from detectron2.utils.logger import setup_logger
from detectron2.utils.testing import get_sample_coco_image
try:
# Caffe2 used to be included in PyTorch, but since PyTorch 1.10+,
# Caffe2 is not included in pre-built packages. This is a safety BC check
from detectron2.export import Caffe2Model, Caffe2Tracer
except ImportError:
raise unittest.SkipTest(
f"PyTorch does not have Caffe2 support. Skipping all tests in {__name__}"
) from None
# TODO: this test requires manifold access, see: T88318502
# Running it on CircleCI causes crash, not sure why.
@unittest.skipIf(os.environ.get("CIRCLECI"), "Caffe2 tests crash on CircleCI.")
@unittest.skipIf(not _check_module_exists("onnx"), "ONNX not installed.")
class TestCaffe2Export(unittest.TestCase):
def setUp(self):
setup_logger()
def _test_model(self, config_path, device="cpu"):
cfg = model_zoo.get_config(config_path)
cfg.MODEL.DEVICE = device
model = model_zoo.get(config_path, trained=True, device=device)
inputs = [{"image": get_sample_coco_image()}]
tracer = Caffe2Tracer(cfg, model, copy.deepcopy(inputs))
with tempfile.TemporaryDirectory(prefix="detectron2_unittest") as d:
if not os.environ.get("CI"):
# This requires onnx, which is not yet available on public CI
c2_model = tracer.export_caffe2()
c2_model.save_protobuf(d)
c2_model.save_graph(os.path.join(d, "test.svg"), inputs=copy.deepcopy(inputs))
c2_model = Caffe2Model.load_protobuf(d)
c2_model(inputs)[0]["instances"]
ts_model = tracer.export_torchscript()
ts_model.save(os.path.join(d, "model.ts"))
def testMaskRCNN(self):
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def testMaskRCNNGPU(self):
self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", device="cuda")
def testRetinaNet(self):
self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml")
|