File size: 6,771 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
from copy import deepcopy
from typing import Dict
import torch

from detectron2.config import CfgNode as CfgNode_
from detectron2.config import instantiate
from detectron2.structures import Boxes, Instances
from detectron2.tracking.base_tracker import build_tracker_head
from detectron2.tracking.bbox_iou_tracker import BBoxIOUTracker  # noqa


class TestBBoxIOUTracker(unittest.TestCase):
    def setUp(self):
        self._img_size = np.array([600, 800])
        self._prev_boxes = np.array(
            [
                [101, 101, 200, 200],
                [301, 301, 450, 450],
            ]
        ).astype(np.float32)
        self._prev_scores = np.array([0.9, 0.9])
        self._prev_classes = np.array([1, 1])
        self._prev_masks = np.ones((2, 600, 800)).astype("uint8")
        self._curr_boxes = np.array(
            [
                [302, 303, 451, 452],
                [101, 102, 201, 203],
            ]
        ).astype(np.float32)
        self._curr_scores = np.array([0.95, 0.85])
        self._curr_classes = np.array([1, 1])
        self._curr_masks = np.ones((2, 600, 800)).astype("uint8")

        self._prev_instances = {
            "image_size": self._img_size,
            "pred_boxes": self._prev_boxes,
            "scores": self._prev_scores,
            "pred_classes": self._prev_classes,
            "pred_masks": self._prev_masks,
        }
        self._prev_instances = self._convertDictPredictionToInstance(self._prev_instances)
        self._curr_instances = {
            "image_size": self._img_size,
            "pred_boxes": self._curr_boxes,
            "scores": self._curr_scores,
            "pred_classes": self._curr_classes,
            "pred_masks": self._curr_masks,
        }
        self._curr_instances = self._convertDictPredictionToInstance(self._curr_instances)

        self._max_num_instances = 200
        self._max_lost_frame_count = 0
        self._min_box_rel_dim = 0.02
        self._min_instance_period = 1
        self._track_iou_threshold = 0.5

    def _convertDictPredictionToInstance(self, prediction: Dict) -> Instances:
        """
        convert prediction from Dict to D2 Instances format
        """
        res = Instances(
            image_size=torch.IntTensor(prediction["image_size"]),
            pred_boxes=Boxes(torch.FloatTensor(prediction["pred_boxes"])),
            pred_masks=torch.IntTensor(prediction["pred_masks"]),
            pred_classes=torch.IntTensor(prediction["pred_classes"]),
            scores=torch.FloatTensor(prediction["scores"]),
        )
        return res

    def test_init(self):
        cfg = {
            "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
            "video_height": self._img_size[0],
            "video_width": self._img_size[1],
            "max_num_instances": self._max_num_instances,
            "max_lost_frame_count": self._max_lost_frame_count,
            "min_box_rel_dim": self._min_box_rel_dim,
            "min_instance_period": self._min_instance_period,
            "track_iou_threshold": self._track_iou_threshold,
        }
        tracker = instantiate(cfg)
        self.assertTrue(tracker._video_height == self._img_size[0])

    def test_from_config(self):
        cfg = CfgNode_()
        cfg.TRACKER_HEADS = CfgNode_()
        cfg.TRACKER_HEADS.TRACKER_NAME = "BBoxIOUTracker"
        cfg.TRACKER_HEADS.VIDEO_HEIGHT = int(self._img_size[0])
        cfg.TRACKER_HEADS.VIDEO_WIDTH = int(self._img_size[1])
        cfg.TRACKER_HEADS.MAX_NUM_INSTANCES = self._max_num_instances
        cfg.TRACKER_HEADS.MAX_LOST_FRAME_COUNT = self._max_lost_frame_count
        cfg.TRACKER_HEADS.MIN_BOX_REL_DIM = self._min_box_rel_dim
        cfg.TRACKER_HEADS.MIN_INSTANCE_PERIOD = self._min_instance_period
        cfg.TRACKER_HEADS.TRACK_IOU_THRESHOLD = self._track_iou_threshold
        tracker = build_tracker_head(cfg)
        self.assertTrue(tracker._video_height == self._img_size[0])

    def test_initialize_extra_fields(self):
        cfg = {
            "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
            "video_height": self._img_size[0],
            "video_width": self._img_size[1],
            "max_num_instances": self._max_num_instances,
            "max_lost_frame_count": self._max_lost_frame_count,
            "min_box_rel_dim": self._min_box_rel_dim,
            "min_instance_period": self._min_instance_period,
            "track_iou_threshold": self._track_iou_threshold,
        }
        tracker = instantiate(cfg)
        instances = tracker._initialize_extra_fields(self._curr_instances)
        self.assertTrue(instances.has("ID"))
        self.assertTrue(instances.has("ID_period"))
        self.assertTrue(instances.has("lost_frame_count"))

    def test_assign_new_id(self):
        cfg = {
            "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
            "video_height": self._img_size[0],
            "video_width": self._img_size[1],
            "max_num_instances": self._max_num_instances,
            "max_lost_frame_count": self._max_lost_frame_count,
            "min_box_rel_dim": self._min_box_rel_dim,
            "min_instance_period": self._min_instance_period,
            "track_iou_threshold": self._track_iou_threshold,
        }
        tracker = instantiate(cfg)
        instances = deepcopy(self._curr_instances)
        instances = tracker._initialize_extra_fields(instances)
        instances = tracker._assign_new_id(instances)
        self.assertTrue(len(instances.ID) == 2)
        self.assertTrue(instances.ID[0] == 2)
        self.assertTrue(instances.ID[1] == 3)

    def test_update(self):
        cfg = {
            "_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
            "video_height": self._img_size[0],
            "video_width": self._img_size[1],
            "max_num_instances": self._max_num_instances,
            "max_lost_frame_count": self._max_lost_frame_count,
            "min_box_rel_dim": self._min_box_rel_dim,
            "min_instance_period": self._min_instance_period,
            "track_iou_threshold": self._track_iou_threshold,
        }
        tracker = instantiate(cfg)
        prev_instances = tracker.update(self._prev_instances)
        self.assertTrue(len(prev_instances.ID) == 2)
        self.assertTrue(prev_instances.ID[0] == 0)
        self.assertTrue(prev_instances.ID[1] == 1)
        curr_instances = tracker.update(self._curr_instances)
        self.assertTrue(len(curr_instances.ID) == 2)
        self.assertTrue(curr_instances.ID[0] == 1)
        self.assertTrue(curr_instances.ID[1] == 0)


if __name__ == "__main__":
    unittest.main()