Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,771 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
from copy import deepcopy
from typing import Dict
import torch
from detectron2.config import CfgNode as CfgNode_
from detectron2.config import instantiate
from detectron2.structures import Boxes, Instances
from detectron2.tracking.base_tracker import build_tracker_head
from detectron2.tracking.bbox_iou_tracker import BBoxIOUTracker # noqa
class TestBBoxIOUTracker(unittest.TestCase):
def setUp(self):
self._img_size = np.array([600, 800])
self._prev_boxes = np.array(
[
[101, 101, 200, 200],
[301, 301, 450, 450],
]
).astype(np.float32)
self._prev_scores = np.array([0.9, 0.9])
self._prev_classes = np.array([1, 1])
self._prev_masks = np.ones((2, 600, 800)).astype("uint8")
self._curr_boxes = np.array(
[
[302, 303, 451, 452],
[101, 102, 201, 203],
]
).astype(np.float32)
self._curr_scores = np.array([0.95, 0.85])
self._curr_classes = np.array([1, 1])
self._curr_masks = np.ones((2, 600, 800)).astype("uint8")
self._prev_instances = {
"image_size": self._img_size,
"pred_boxes": self._prev_boxes,
"scores": self._prev_scores,
"pred_classes": self._prev_classes,
"pred_masks": self._prev_masks,
}
self._prev_instances = self._convertDictPredictionToInstance(self._prev_instances)
self._curr_instances = {
"image_size": self._img_size,
"pred_boxes": self._curr_boxes,
"scores": self._curr_scores,
"pred_classes": self._curr_classes,
"pred_masks": self._curr_masks,
}
self._curr_instances = self._convertDictPredictionToInstance(self._curr_instances)
self._max_num_instances = 200
self._max_lost_frame_count = 0
self._min_box_rel_dim = 0.02
self._min_instance_period = 1
self._track_iou_threshold = 0.5
def _convertDictPredictionToInstance(self, prediction: Dict) -> Instances:
"""
convert prediction from Dict to D2 Instances format
"""
res = Instances(
image_size=torch.IntTensor(prediction["image_size"]),
pred_boxes=Boxes(torch.FloatTensor(prediction["pred_boxes"])),
pred_masks=torch.IntTensor(prediction["pred_masks"]),
pred_classes=torch.IntTensor(prediction["pred_classes"]),
scores=torch.FloatTensor(prediction["scores"]),
)
return res
def test_init(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
self.assertTrue(tracker._video_height == self._img_size[0])
def test_from_config(self):
cfg = CfgNode_()
cfg.TRACKER_HEADS = CfgNode_()
cfg.TRACKER_HEADS.TRACKER_NAME = "BBoxIOUTracker"
cfg.TRACKER_HEADS.VIDEO_HEIGHT = int(self._img_size[0])
cfg.TRACKER_HEADS.VIDEO_WIDTH = int(self._img_size[1])
cfg.TRACKER_HEADS.MAX_NUM_INSTANCES = self._max_num_instances
cfg.TRACKER_HEADS.MAX_LOST_FRAME_COUNT = self._max_lost_frame_count
cfg.TRACKER_HEADS.MIN_BOX_REL_DIM = self._min_box_rel_dim
cfg.TRACKER_HEADS.MIN_INSTANCE_PERIOD = self._min_instance_period
cfg.TRACKER_HEADS.TRACK_IOU_THRESHOLD = self._track_iou_threshold
tracker = build_tracker_head(cfg)
self.assertTrue(tracker._video_height == self._img_size[0])
def test_initialize_extra_fields(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
instances = tracker._initialize_extra_fields(self._curr_instances)
self.assertTrue(instances.has("ID"))
self.assertTrue(instances.has("ID_period"))
self.assertTrue(instances.has("lost_frame_count"))
def test_assign_new_id(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
instances = deepcopy(self._curr_instances)
instances = tracker._initialize_extra_fields(instances)
instances = tracker._assign_new_id(instances)
self.assertTrue(len(instances.ID) == 2)
self.assertTrue(instances.ID[0] == 2)
self.assertTrue(instances.ID[1] == 3)
def test_update(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
prev_instances = tracker.update(self._prev_instances)
self.assertTrue(len(prev_instances.ID) == 2)
self.assertTrue(prev_instances.ID[0] == 0)
self.assertTrue(prev_instances.ID[1] == 1)
curr_instances = tracker.update(self._curr_instances)
self.assertTrue(len(curr_instances.ID) == 2)
self.assertTrue(curr_instances.ID[0] == 1)
self.assertTrue(curr_instances.ID[1] == 0)
if __name__ == "__main__":
unittest.main()
|