File size: 6,628 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// Copyright (c) Facebook, Inc. and its affiliates.
// @lint-ignore-every CLANGTIDY
// This is an example code that demonstrates how to run inference
// with a torchscript format Mask R-CNN model exported by ./export_model.py
// using export method=tracing, caffe2_tracing & scripting.

#include <opencv2/opencv.hpp>
#include <iostream>
#include <string>

#include <c10/cuda/CUDAStream.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/script.h>

// only needed for export_method=tracing
#include <torchvision/vision.h> // @oss-only
// @fb-only: #include <torchvision/csrc/vision.h>

using namespace std;

c10::IValue get_caffe2_tracing_inputs(cv::Mat& img, c10::Device device) {
  const int height = img.rows;
  const int width = img.cols;
  // FPN models require divisibility of 32.
  // Tracing mode does padding inside the graph, but caffe2_tracing does not.
  assert(height % 32 == 0 && width % 32 == 0);
  const int channels = 3;

  auto input =
      torch::from_blob(img.data, {1, height, width, channels}, torch::kUInt8);
  // NHWC to NCHW
  input = input.to(device, torch::kFloat).permute({0, 3, 1, 2}).contiguous();

  std::array<float, 3> im_info_data{height * 1.0f, width * 1.0f, 1.0f};
  auto im_info =
      torch::from_blob(im_info_data.data(), {1, 3}).clone().to(device);
  return std::make_tuple(input, im_info);
}

c10::IValue get_tracing_inputs(cv::Mat& img, c10::Device device) {
  const int height = img.rows;
  const int width = img.cols;
  const int channels = 3;

  auto input =
      torch::from_blob(img.data, {height, width, channels}, torch::kUInt8);
  // HWC to CHW
  input = input.to(device, torch::kFloat).permute({2, 0, 1}).contiguous();
  return input;
}

// create a Tuple[Dict[str, Tensor]] which is the input type of scripted model
c10::IValue get_scripting_inputs(cv::Mat& img, c10::Device device) {
  const int height = img.rows;
  const int width = img.cols;
  const int channels = 3;

  auto img_tensor =
      torch::from_blob(img.data, {height, width, channels}, torch::kUInt8);
  // HWC to CHW
  img_tensor =
      img_tensor.to(device, torch::kFloat).permute({2, 0, 1}).contiguous();
  auto dic = c10::Dict<std::string, torch::Tensor>();
  dic.insert("image", img_tensor);
  return std::make_tuple(dic);
}

c10::IValue
get_inputs(std::string export_method, cv::Mat& img, c10::Device device) {
  // Given an image, create inputs in the format required by the model.
  if (export_method == "tracing")
    return get_tracing_inputs(img, device);
  if (export_method == "caffe2_tracing")
    return get_caffe2_tracing_inputs(img, device);
  if (export_method == "scripting")
    return get_scripting_inputs(img, device);
  abort();
}

struct MaskRCNNOutputs {
  at::Tensor pred_boxes, pred_classes, pred_masks, scores;
  int num_instances() const {
    return pred_boxes.sizes()[0];
  }
};

MaskRCNNOutputs get_outputs(std::string export_method, c10::IValue outputs) {
  // Given outputs of the model, extract tensors from it to turn into a
  // common MaskRCNNOutputs format.
  if (export_method == "tracing") {
    auto out_tuple = outputs.toTuple()->elements();
    // They are ordered alphabetically by their field name in Instances
    return MaskRCNNOutputs{
        out_tuple[0].toTensor(),
        out_tuple[1].toTensor(),
        out_tuple[2].toTensor(),
        out_tuple[3].toTensor()};
  }
  if (export_method == "caffe2_tracing") {
    auto out_tuple = outputs.toTuple()->elements();
    // A legacy order used by caffe2 models
    return MaskRCNNOutputs{
        out_tuple[0].toTensor(),
        out_tuple[2].toTensor(),
        out_tuple[3].toTensor(),
        out_tuple[1].toTensor()};
  }
  if (export_method == "scripting") {
    // With the ScriptableAdapter defined in export_model.py, the output is
    // List[Dict[str, Any]].
    auto out_dict = outputs.toList().get(0).toGenericDict();
    return MaskRCNNOutputs{
        out_dict.at("pred_boxes").toTensor(),
        out_dict.at("pred_classes").toTensor(),
        out_dict.at("pred_masks").toTensor(),
        out_dict.at("scores").toTensor()};
  }
  abort();
}

int main(int argc, const char* argv[]) {
  if (argc != 4) {
    cerr << R"xx(
Usage:
   ./torchscript_mask_rcnn model.ts input.jpg EXPORT_METHOD

   EXPORT_METHOD can be "tracing", "caffe2_tracing" or "scripting".
)xx";
    return 1;
  }
  std::string image_file = argv[2];
  std::string export_method = argv[3];
  assert(
      export_method == "caffe2_tracing" || export_method == "tracing" ||
      export_method == "scripting");

  torch::jit::FusionStrategy strat = {{torch::jit::FusionBehavior::DYNAMIC, 1}};
  torch::jit::setFusionStrategy(strat);
  torch::autograd::AutoGradMode guard(false);
  auto module = torch::jit::load(argv[1]);

  assert(module.buffers().size() > 0);
  // Assume that the entire model is on the same device.
  // We just put input to this device.
  auto device = (*begin(module.buffers())).device();

  cv::Mat input_img = cv::imread(image_file, cv::IMREAD_COLOR);
  auto inputs = get_inputs(export_method, input_img, device);

  // Run the network
  auto output = module.forward({inputs});
  if (device.is_cuda())
    c10::cuda::getCurrentCUDAStream().synchronize();

  // run 3 more times to benchmark
  int N_benchmark = 3, N_warmup = 1;
  auto start_time = chrono::high_resolution_clock::now();
  for (int i = 0; i < N_benchmark + N_warmup; ++i) {
    if (i == N_warmup)
      start_time = chrono::high_resolution_clock::now();
    output = module.forward({inputs});
    if (device.is_cuda())
      c10::cuda::getCurrentCUDAStream().synchronize();
  }
  auto end_time = chrono::high_resolution_clock::now();
  auto ms = chrono::duration_cast<chrono::microseconds>(end_time - start_time)
                .count();
  cout << "Latency (should vary with different inputs): "
       << ms * 1.0 / 1e6 / N_benchmark << " seconds" << endl;

  // Parse Mask R-CNN outputs
  auto rcnn_outputs = get_outputs(export_method, output);
  cout << "Number of detected objects: " << rcnn_outputs.num_instances()
       << endl;

  cout << "pred_boxes: " << rcnn_outputs.pred_boxes.toString() << " "
       << rcnn_outputs.pred_boxes.sizes() << endl;
  cout << "scores: " << rcnn_outputs.scores.toString() << " "
       << rcnn_outputs.scores.sizes() << endl;
  cout << "pred_classes: " << rcnn_outputs.pred_classes.toString() << " "
       << rcnn_outputs.pred_classes.sizes() << endl;
  cout << "pred_masks: " << rcnn_outputs.pred_masks.toString() << " "
       << rcnn_outputs.pred_masks.sizes() << endl;

  cout << rcnn_outputs.pred_boxes << endl;
  return 0;
}