File size: 5,012 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Author  :   Peike Li
@Contact :   [email protected]
@File    :   resnext.py.py
@Time    :   8/11/19 8:58 PM
@Desc    :   
@License :   This source code is licensed under the license found in the 
             LICENSE file in the root directory of this source tree.
"""
import functools
import torch.nn as nn
import math
from torch.utils.model_zoo import load_url

from modules import InPlaceABNSync

BatchNorm2d = functools.partial(InPlaceABNSync, activation='none')

__all__ = ['ResNeXt', 'resnext101']  # support resnext 101

model_urls = {
    'resnext50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnext50-imagenet.pth',
    'resnext101': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnext101-imagenet.pth'
}


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class GroupBottleneck(nn.Module):
    expansion = 2

    def __init__(self, inplanes, planes, stride=1, groups=1, downsample=None):
        super(GroupBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, groups=groups, bias=False)
        self.bn2 = BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1, bias=False)
        self.bn3 = BatchNorm2d(planes * 2)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class ResNeXt(nn.Module):

    def __init__(self, block, layers, groups=32, num_classes=1000):
        self.inplanes = 128
        super(ResNeXt, self).__init__()
        self.conv1 = conv3x3(3, 64, stride=2)
        self.bn1 = BatchNorm2d(64)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(64, 64)
        self.bn2 = BatchNorm2d(64)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv3 = conv3x3(64, 128)
        self.bn3 = BatchNorm2d(128)
        self.relu3 = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 128, layers[0], groups=groups)
        self.layer2 = self._make_layer(block, 256, layers[1], stride=2, groups=groups)
        self.layer3 = self._make_layer(block, 512, layers[2], stride=2, groups=groups)
        self.layer4 = self._make_layer(block, 1024, layers[3], stride=2, groups=groups)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(1024 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels // m.groups
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1, groups=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, groups, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=groups))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.relu1(self.bn1(self.conv1(x)))
        x = self.relu2(self.bn2(self.conv2(x)))
        x = self.relu3(self.bn3(self.conv3(x)))
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def resnext101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on Places
    """
    model = ResNeXt(GroupBottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(load_url(model_urls['resnext101']), strict=False)
    return model