File size: 7,224 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
import types
from collections import UserDict
from typing import List

from detectron2.utils.logger import log_first_n

__all__ = ["DatasetCatalog", "MetadataCatalog", "Metadata"]


class _DatasetCatalog(UserDict):
    """
    A global dictionary that stores information about the datasets and how to obtain them.

    It contains a mapping from strings
    (which are names that identify a dataset, e.g. "coco_2014_train")
    to a function which parses the dataset and returns the samples in the
    format of `list[dict]`.

    The returned dicts should be in Detectron2 Dataset format (See DATASETS.md for details)
    if used with the data loader functionalities in `data/build.py,data/detection_transform.py`.

    The purpose of having this catalog is to make it easy to choose
    different datasets, by just using the strings in the config.
    """

    def register(self, name, func):
        """
        Args:
            name (str): the name that identifies a dataset, e.g. "coco_2014_train".
            func (callable): a callable which takes no arguments and returns a list of dicts.
                It must return the same results if called multiple times.
        """
        assert callable(func), "You must register a function with `DatasetCatalog.register`!"
        assert name not in self, "Dataset '{}' is already registered!".format(name)
        self[name] = func

    def get(self, name):
        """
        Call the registered function and return its results.

        Args:
            name (str): the name that identifies a dataset, e.g. "coco_2014_train".

        Returns:
            list[dict]: dataset annotations.
        """
        try:
            f = self[name]
        except KeyError as e:
            raise KeyError(
                "Dataset '{}' is not registered! Available datasets are: {}".format(
                    name, ", ".join(list(self.keys()))
                )
            ) from e
        return f()

    def list(self) -> List[str]:
        """
        List all registered datasets.

        Returns:
            list[str]
        """
        return list(self.keys())

    def remove(self, name):
        """
        Alias of ``pop``.
        """
        self.pop(name)

    def __str__(self):
        return "DatasetCatalog(registered datasets: {})".format(", ".join(self.keys()))

    __repr__ = __str__


DatasetCatalog = _DatasetCatalog()
DatasetCatalog.__doc__ = (
    _DatasetCatalog.__doc__
    + """
    .. automethod:: detectron2.data.catalog.DatasetCatalog.register
    .. automethod:: detectron2.data.catalog.DatasetCatalog.get
"""
)


class Metadata(types.SimpleNamespace):
    """
    A class that supports simple attribute setter/getter.
    It is intended for storing metadata of a dataset and make it accessible globally.

    Examples:
    ::
        # somewhere when you load the data:
        MetadataCatalog.get("mydataset").thing_classes = ["person", "dog"]

        # somewhere when you print statistics or visualize:
        classes = MetadataCatalog.get("mydataset").thing_classes
    """

    # the name of the dataset
    # set default to N/A so that `self.name` in the errors will not trigger getattr again
    name: str = "N/A"

    _RENAMED = {
        "class_names": "thing_classes",
        "dataset_id_to_contiguous_id": "thing_dataset_id_to_contiguous_id",
        "stuff_class_names": "stuff_classes",
    }

    def __getattr__(self, key):
        if key in self._RENAMED:
            log_first_n(
                logging.WARNING,
                "Metadata '{}' was renamed to '{}'!".format(key, self._RENAMED[key]),
                n=10,
            )
            return getattr(self, self._RENAMED[key])

        # "name" exists in every metadata
        if len(self.__dict__) > 1:
            raise AttributeError(
                "Attribute '{}' does not exist in the metadata of dataset '{}'. Available "
                "keys are {}.".format(key, self.name, str(self.__dict__.keys()))
            )
        else:
            raise AttributeError(
                f"Attribute '{key}' does not exist in the metadata of dataset '{self.name}': "
                "metadata is empty."
            )

    def __setattr__(self, key, val):
        if key in self._RENAMED:
            log_first_n(
                logging.WARNING,
                "Metadata '{}' was renamed to '{}'!".format(key, self._RENAMED[key]),
                n=10,
            )
            setattr(self, self._RENAMED[key], val)

        # Ensure that metadata of the same name stays consistent
        try:
            oldval = getattr(self, key)
            assert oldval == val, (
                "Attribute '{}' in the metadata of '{}' cannot be set "
                "to a different value!\n{} != {}".format(key, self.name, oldval, val)
            )
        except AttributeError:
            super().__setattr__(key, val)

    def as_dict(self):
        """
        Returns all the metadata as a dict.
        Note that modifications to the returned dict will not reflect on the Metadata object.
        """
        return copy.copy(self.__dict__)

    def set(self, **kwargs):
        """
        Set multiple metadata with kwargs.
        """
        for k, v in kwargs.items():
            setattr(self, k, v)
        return self

    def get(self, key, default=None):
        """
        Access an attribute and return its value if exists.
        Otherwise return default.
        """
        try:
            return getattr(self, key)
        except AttributeError:
            return default


class _MetadataCatalog(UserDict):
    """
    MetadataCatalog is a global dictionary that provides access to
    :class:`Metadata` of a given dataset.

    The metadata associated with a certain name is a singleton: once created, the
    metadata will stay alive and will be returned by future calls to ``get(name)``.

    It's like global variables, so don't abuse it.
    It's meant for storing knowledge that's constant and shared across the execution
    of the program, e.g.: the class names in COCO.
    """

    def get(self, name):
        """
        Args:
            name (str): name of a dataset (e.g. coco_2014_train).

        Returns:
            Metadata: The :class:`Metadata` instance associated with this name,
            or create an empty one if none is available.
        """
        assert len(name)
        r = super().get(name, None)
        if r is None:
            r = self[name] = Metadata(name=name)
        return r

    def list(self):
        """
        List all registered metadata.

        Returns:
            list[str]: keys (names of datasets) of all registered metadata
        """
        return list(self.keys())

    def remove(self, name):
        """
        Alias of ``pop``.
        """
        self.pop(name)

    def __str__(self):
        return "MetadataCatalog(registered metadata: {})".format(", ".join(self.keys()))

    __repr__ = __str__


MetadataCatalog = _MetadataCatalog()
MetadataCatalog.__doc__ = (
    _MetadataCatalog.__doc__
    + """
    .. automethod:: detectron2.data.catalog.MetadataCatalog.get
"""
)