Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,439 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# Copyright (c) Facebook, Inc. and its affiliates.
import collections
import math
from typing import List
import torch
from torch import nn
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, move_device_like
from detectron2.structures import Boxes, RotatedBoxes
from detectron2.utils.registry import Registry
ANCHOR_GENERATOR_REGISTRY = Registry("ANCHOR_GENERATOR")
ANCHOR_GENERATOR_REGISTRY.__doc__ = """
Registry for modules that creates object detection anchors for feature maps.
The registered object will be called with `obj(cfg, input_shape)`.
"""
class BufferList(nn.Module):
"""
Similar to nn.ParameterList, but for buffers
"""
def __init__(self, buffers):
super().__init__()
for i, buffer in enumerate(buffers):
# Use non-persistent buffer so the values are not saved in checkpoint
self.register_buffer(str(i), buffer, persistent=False)
def __len__(self):
return len(self._buffers)
def __iter__(self):
return iter(self._buffers.values())
def _create_grid_offsets(
size: List[int], stride: int, offset: float, target_device_tensor: torch.Tensor
):
grid_height, grid_width = size
shifts_x = move_device_like(
torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32),
target_device_tensor,
)
shifts_y = move_device_like(
torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32),
target_device_tensor,
)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
return shift_x, shift_y
def _broadcast_params(params, num_features, name):
"""
If one size (or aspect ratio) is specified and there are multiple feature
maps, we "broadcast" anchors of that single size (or aspect ratio)
over all feature maps.
If params is list[float], or list[list[float]] with len(params) == 1, repeat
it num_features time.
Returns:
list[list[float]]: param for each feature
"""
assert isinstance(
params, collections.abc.Sequence
), f"{name} in anchor generator has to be a list! Got {params}."
assert len(params), f"{name} in anchor generator cannot be empty!"
if not isinstance(params[0], collections.abc.Sequence): # params is list[float]
return [params] * num_features
if len(params) == 1:
return list(params) * num_features
assert len(params) == num_features, (
f"Got {name} of length {len(params)} in anchor generator, "
f"but the number of input features is {num_features}!"
)
return params
@ANCHOR_GENERATOR_REGISTRY.register()
class DefaultAnchorGenerator(nn.Module):
"""
Compute anchors in the standard ways described in
"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks".
"""
box_dim: torch.jit.Final[int] = 4
"""
the dimension of each anchor box.
"""
@configurable
def __init__(self, *, sizes, aspect_ratios, strides, offset=0.5):
"""
This interface is experimental.
Args:
sizes (list[list[float]] or list[float]):
If ``sizes`` is list[list[float]], ``sizes[i]`` is the list of anchor sizes
(i.e. sqrt of anchor area) to use for the i-th feature map.
If ``sizes`` is list[float], ``sizes`` is used for all feature maps.
Anchor sizes are given in absolute lengths in units of
the input image; they do not dynamically scale if the input image size changes.
aspect_ratios (list[list[float]] or list[float]): list of aspect ratios
(i.e. height / width) to use for anchors. Same "broadcast" rule for `sizes` applies.
strides (list[int]): stride of each input feature.
offset (float): Relative offset between the center of the first anchor and the top-left
corner of the image. Value has to be in [0, 1).
Recommend to use 0.5, which means half stride.
"""
super().__init__()
self.strides = strides
self.num_features = len(self.strides)
sizes = _broadcast_params(sizes, self.num_features, "sizes")
aspect_ratios = _broadcast_params(aspect_ratios, self.num_features, "aspect_ratios")
self.cell_anchors = self._calculate_anchors(sizes, aspect_ratios)
self.offset = offset
assert 0.0 <= self.offset < 1.0, self.offset
@classmethod
def from_config(cls, cfg, input_shape: List[ShapeSpec]):
return {
"sizes": cfg.MODEL.ANCHOR_GENERATOR.SIZES,
"aspect_ratios": cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS,
"strides": [x.stride for x in input_shape],
"offset": cfg.MODEL.ANCHOR_GENERATOR.OFFSET,
}
def _calculate_anchors(self, sizes, aspect_ratios):
cell_anchors = [
self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)
]
return BufferList(cell_anchors)
@property
@torch.jit.unused
def num_cell_anchors(self):
"""
Alias of `num_anchors`.
"""
return self.num_anchors
@property
@torch.jit.unused
def num_anchors(self):
"""
Returns:
list[int]: Each int is the number of anchors at every pixel
location, on that feature map.
For example, if at every pixel we use anchors of 3 aspect
ratios and 5 sizes, the number of anchors is 15.
(See also ANCHOR_GENERATOR.SIZES and ANCHOR_GENERATOR.ASPECT_RATIOS in config)
In standard RPN models, `num_anchors` on every feature map is the same.
"""
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
def _grid_anchors(self, grid_sizes: List[List[int]]):
"""
Returns:
list[Tensor]: #featuremap tensors, each is (#locations x #cell_anchors) x 4
"""
anchors = []
# buffers() not supported by torchscript. use named_buffers() instead
buffers: List[torch.Tensor] = [x[1] for x in self.cell_anchors.named_buffers()]
for size, stride, base_anchors in zip(grid_sizes, self.strides, buffers):
shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors)
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
return anchors
def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)):
"""
Generate a tensor storing canonical anchor boxes, which are all anchor
boxes of different sizes and aspect_ratios centered at (0, 0).
We can later build the set of anchors for a full feature map by
shifting and tiling these tensors (see `meth:_grid_anchors`).
Args:
sizes (tuple[float]):
aspect_ratios (tuple[float]]):
Returns:
Tensor of shape (len(sizes) * len(aspect_ratios), 4) storing anchor boxes
in XYXY format.
"""
# This is different from the anchor generator defined in the original Faster R-CNN
# code or Detectron. They yield the same AP, however the old version defines cell
# anchors in a less natural way with a shift relative to the feature grid and
# quantization that results in slightly different sizes for different aspect ratios.
# See also https://github.com/facebookresearch/Detectron/issues/227
anchors = []
for size in sizes:
area = size**2.0
for aspect_ratio in aspect_ratios:
# s * s = w * h
# a = h / w
# ... some algebra ...
# w = sqrt(s * s / a)
# h = a * w
w = math.sqrt(area / aspect_ratio)
h = aspect_ratio * w
x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
anchors.append([x0, y0, x1, y1])
return torch.tensor(anchors)
def forward(self, features: List[torch.Tensor]):
"""
Args:
features (list[Tensor]): list of backbone feature maps on which to generate anchors.
Returns:
list[Boxes]: a list of Boxes containing all the anchors for each feature map
(i.e. the cell anchors repeated over all locations in the feature map).
The number of anchors of each feature map is Hi x Wi x num_cell_anchors,
where Hi, Wi are resolution of the feature map divided by anchor stride.
"""
grid_sizes = [feature_map.shape[-2:] for feature_map in features]
anchors_over_all_feature_maps = self._grid_anchors(grid_sizes)
return [Boxes(x) for x in anchors_over_all_feature_maps]
@ANCHOR_GENERATOR_REGISTRY.register()
class RotatedAnchorGenerator(nn.Module):
"""
Compute rotated anchors used by Rotated RPN (RRPN), described in
"Arbitrary-Oriented Scene Text Detection via Rotation Proposals".
"""
box_dim: int = 5
"""
the dimension of each anchor box.
"""
@configurable
def __init__(self, *, sizes, aspect_ratios, strides, angles, offset=0.5):
"""
This interface is experimental.
Args:
sizes (list[list[float]] or list[float]):
If sizes is list[list[float]], sizes[i] is the list of anchor sizes
(i.e. sqrt of anchor area) to use for the i-th feature map.
If sizes is list[float], the sizes are used for all feature maps.
Anchor sizes are given in absolute lengths in units of
the input image; they do not dynamically scale if the input image size changes.
aspect_ratios (list[list[float]] or list[float]): list of aspect ratios
(i.e. height / width) to use for anchors. Same "broadcast" rule for `sizes` applies.
strides (list[int]): stride of each input feature.
angles (list[list[float]] or list[float]): list of angles (in degrees CCW)
to use for anchors. Same "broadcast" rule for `sizes` applies.
offset (float): Relative offset between the center of the first anchor and the top-left
corner of the image. Value has to be in [0, 1).
Recommend to use 0.5, which means half stride.
"""
super().__init__()
self.strides = strides
self.num_features = len(self.strides)
sizes = _broadcast_params(sizes, self.num_features, "sizes")
aspect_ratios = _broadcast_params(aspect_ratios, self.num_features, "aspect_ratios")
angles = _broadcast_params(angles, self.num_features, "angles")
self.cell_anchors = self._calculate_anchors(sizes, aspect_ratios, angles)
self.offset = offset
assert 0.0 <= self.offset < 1.0, self.offset
@classmethod
def from_config(cls, cfg, input_shape: List[ShapeSpec]):
return {
"sizes": cfg.MODEL.ANCHOR_GENERATOR.SIZES,
"aspect_ratios": cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS,
"strides": [x.stride for x in input_shape],
"offset": cfg.MODEL.ANCHOR_GENERATOR.OFFSET,
"angles": cfg.MODEL.ANCHOR_GENERATOR.ANGLES,
}
def _calculate_anchors(self, sizes, aspect_ratios, angles):
cell_anchors = [
self.generate_cell_anchors(size, aspect_ratio, angle).float()
for size, aspect_ratio, angle in zip(sizes, aspect_ratios, angles)
]
return BufferList(cell_anchors)
@property
def num_cell_anchors(self):
"""
Alias of `num_anchors`.
"""
return self.num_anchors
@property
def num_anchors(self):
"""
Returns:
list[int]: Each int is the number of anchors at every pixel
location, on that feature map.
For example, if at every pixel we use anchors of 3 aspect
ratios, 2 sizes and 5 angles, the number of anchors is 30.
(See also ANCHOR_GENERATOR.SIZES, ANCHOR_GENERATOR.ASPECT_RATIOS
and ANCHOR_GENERATOR.ANGLES in config)
In standard RRPN models, `num_anchors` on every feature map is the same.
"""
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
def _grid_anchors(self, grid_sizes):
anchors = []
for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors):
shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors)
zeros = torch.zeros_like(shift_x)
shifts = torch.stack((shift_x, shift_y, zeros, zeros, zeros), dim=1)
anchors.append((shifts.view(-1, 1, 5) + base_anchors.view(1, -1, 5)).reshape(-1, 5))
return anchors
def generate_cell_anchors(
self,
sizes=(32, 64, 128, 256, 512),
aspect_ratios=(0.5, 1, 2),
angles=(-90, -60, -30, 0, 30, 60, 90),
):
"""
Generate a tensor storing canonical anchor boxes, which are all anchor
boxes of different sizes, aspect_ratios, angles centered at (0, 0).
We can later build the set of anchors for a full feature map by
shifting and tiling these tensors (see `meth:_grid_anchors`).
Args:
sizes (tuple[float]):
aspect_ratios (tuple[float]]):
angles (tuple[float]]):
Returns:
Tensor of shape (len(sizes) * len(aspect_ratios) * len(angles), 5)
storing anchor boxes in (x_ctr, y_ctr, w, h, angle) format.
"""
anchors = []
for size in sizes:
area = size**2.0
for aspect_ratio in aspect_ratios:
# s * s = w * h
# a = h / w
# ... some algebra ...
# w = sqrt(s * s / a)
# h = a * w
w = math.sqrt(area / aspect_ratio)
h = aspect_ratio * w
anchors.extend([0, 0, w, h, a] for a in angles)
return torch.tensor(anchors)
def forward(self, features):
"""
Args:
features (list[Tensor]): list of backbone feature maps on which to generate anchors.
Returns:
list[RotatedBoxes]: a list of Boxes containing all the anchors for each feature map
(i.e. the cell anchors repeated over all locations in the feature map).
The number of anchors of each feature map is Hi x Wi x num_cell_anchors,
where Hi, Wi are resolution of the feature map divided by anchor stride.
"""
grid_sizes = [feature_map.shape[-2:] for feature_map in features]
anchors_over_all_feature_maps = self._grid_anchors(grid_sizes)
return [RotatedBoxes(x) for x in anchors_over_all_feature_maps]
def build_anchor_generator(cfg, input_shape):
"""
Built an anchor generator from `cfg.MODEL.ANCHOR_GENERATOR.NAME`.
"""
anchor_generator = cfg.MODEL.ANCHOR_GENERATOR.NAME
return ANCHOR_GENERATOR_REGISTRY.get(anchor_generator)(cfg, input_shape)
|