Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,101 Bytes
61c2d32 ff899d3 61c2d32 1527335 61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import List, Tuple, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch.nn import functional as F
from detectron2.layers import cat, ciou_loss, diou_loss
from detectron2.structures import Boxes
# Value for clamping large dw and dh predictions. The heuristic is that we clamp
# such that dw and dh are no larger than what would transform a 16px box into a
# 1000px box (based on a small anchor, 16px, and a typical image size, 1000px).
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)
__all__ = ["Box2BoxTransform", "Box2BoxTransformRotated", "Box2BoxTransformLinear"]
@torch.jit.script
class Box2BoxTransform:
"""
The box-to-box transform defined in R-CNN. The transformation is parameterized
by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height
by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height).
"""
def __init__(
self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP
):
"""
Args:
weights (4-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
such that the deltas have unit variance; now they are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
self.scale_clamp = scale_clamp
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): source boxes, e.g., object proposals
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
wx, wy, ww, wh = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
deltas = torch.stack((dx, dy, dw, dh), dim=1)
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
deltas = deltas.float() # ensure fp32 for decoding precision
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
x1 = pred_ctr_x - 0.5 * pred_w
y1 = pred_ctr_y - 0.5 * pred_h
x2 = pred_ctr_x + 0.5 * pred_w
y2 = pred_ctr_y + 0.5 * pred_h
pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1)
return pred_boxes.reshape(deltas.shape)
# @torch.jit.script
class Box2BoxTransformRotated:
"""
The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized
by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height
by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height),
and rotate a box's angle by da (radians).
Note: angles of deltas are in radians while angles of boxes are in degrees.
"""
def __init__(
self,
weights: Tuple[float, float, float, float, float],
scale_clamp: float = _DEFAULT_SCALE_CLAMP,
):
"""
Args:
weights (5-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh, da) deltas. These are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
self.scale_clamp = scale_clamp
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): Nx5 source boxes, e.g., object proposals
target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1)
target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind(
target_boxes, dim=1
)
wx, wy, ww, wh, wa = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
# Angles of deltas are in radians while angles of boxes are in degrees.
# the conversion to radians serve as a way to normalize the values
da = target_angles - src_angles
da = (da + 180.0) % 360.0 - 180.0 # make it in [-180, 180)
da *= wa * math.pi / 180.0
deltas = torch.stack((dx, dy, dw, dh, da), dim=1)
assert (
(src_widths > 0).all().item()
), "Input boxes to Box2BoxTransformRotated are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*5).
deltas[i] represents box transformation for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 5)
"""
assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5
boxes = boxes.to(deltas.dtype).unsqueeze(2)
ctr_x = boxes[:, 0]
ctr_y = boxes[:, 1]
widths = boxes[:, 2]
heights = boxes[:, 3]
angles = boxes[:, 4]
wx, wy, ww, wh, wa = self.weights
dx = deltas[:, 0::5] / wx
dy = deltas[:, 1::5] / wy
dw = deltas[:, 2::5] / ww
dh = deltas[:, 3::5] / wh
da = deltas[:, 4::5] / wa
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::5] = dx * widths + ctr_x # x_ctr
pred_boxes[:, 1::5] = dy * heights + ctr_y # y_ctr
pred_boxes[:, 2::5] = torch.exp(dw) * widths # width
pred_boxes[:, 3::5] = torch.exp(dh) * heights # height
# Following original RRPN implementation,
# angles of deltas are in radians while angles of boxes are in degrees.
pred_angle = da * 180.0 / math.pi + angles
pred_angle = (pred_angle + 180.0) % 360.0 - 180.0 # make it in [-180, 180)
pred_boxes[:, 4::5] = pred_angle
return pred_boxes
class Box2BoxTransformLinear:
"""
The linear box-to-box transform defined in FCOS. The transformation is parameterized
by the distance from the center of (square) src box to 4 edges of the target box.
"""
def __init__(self, normalize_by_size=True):
"""
Args:
normalize_by_size: normalize deltas by the size of src (anchor) boxes.
"""
self.normalize_by_size = normalize_by_size
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx1, dy1, dx2, dy2) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true.
The center of src must be inside target boxes.
Args:
src_boxes (Tensor): square source boxes, e.g., anchors
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_ctr_x = 0.5 * (src_boxes[:, 0] + src_boxes[:, 2])
src_ctr_y = 0.5 * (src_boxes[:, 1] + src_boxes[:, 3])
target_l = src_ctr_x - target_boxes[:, 0]
target_t = src_ctr_y - target_boxes[:, 1]
target_r = target_boxes[:, 2] - src_ctr_x
target_b = target_boxes[:, 3] - src_ctr_y
deltas = torch.stack((target_l, target_t, target_r, target_b), dim=1)
if self.normalize_by_size:
stride_w = src_boxes[:, 2] - src_boxes[:, 0]
stride_h = src_boxes[:, 3] - src_boxes[:, 1]
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
deltas = deltas / strides
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx1, dy1, dx2, dy2) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
# Ensure the output is a valid box. See Sec 2.1 of https://arxiv.org/abs/2006.09214
deltas = F.relu(deltas)
boxes = boxes.to(deltas.dtype)
ctr_x = 0.5 * (boxes[:, 0] + boxes[:, 2])
ctr_y = 0.5 * (boxes[:, 1] + boxes[:, 3])
if self.normalize_by_size:
stride_w = boxes[:, 2] - boxes[:, 0]
stride_h = boxes[:, 3] - boxes[:, 1]
strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
deltas = deltas * strides
l = deltas[:, 0::4]
t = deltas[:, 1::4]
r = deltas[:, 2::4]
b = deltas[:, 3::4]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = ctr_x[:, None] - l # x1
pred_boxes[:, 1::4] = ctr_y[:, None] - t # y1
pred_boxes[:, 2::4] = ctr_x[:, None] + r # x2
pred_boxes[:, 3::4] = ctr_y[:, None] + b # y2
return pred_boxes
def _dense_box_regression_loss(
anchors: List[Union[Boxes, torch.Tensor]],
box2box_transform: Box2BoxTransform,
pred_anchor_deltas: List[torch.Tensor],
gt_boxes: List[torch.Tensor],
fg_mask: torch.Tensor,
box_reg_loss_type="smooth_l1",
smooth_l1_beta=0.0,
):
"""
Compute loss for dense multi-level box regression.
Loss is accumulated over ``fg_mask``.
Args:
anchors: #lvl anchor boxes, each is (HixWixA, 4)
pred_anchor_deltas: #lvl predictions, each is (N, HixWixA, 4)
gt_boxes: N ground truth boxes, each has shape (R, 4) (R = sum(Hi * Wi * A))
fg_mask: the foreground boolean mask of shape (N, R) to compute loss on
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou",
"diou", "ciou".
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
"""
if isinstance(anchors[0], Boxes):
anchors = type(anchors[0]).cat(anchors).tensor # (R, 4)
else:
anchors = cat(anchors)
if box_reg_loss_type == "smooth_l1":
gt_anchor_deltas = [box2box_transform.get_deltas(anchors, k) for k in gt_boxes]
gt_anchor_deltas = torch.stack(gt_anchor_deltas) # (N, R, 4)
loss_box_reg = smooth_l1_loss(
cat(pred_anchor_deltas, dim=1)[fg_mask],
gt_anchor_deltas[fg_mask],
beta=smooth_l1_beta,
reduction="sum",
)
elif box_reg_loss_type == "giou":
pred_boxes = [
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
]
loss_box_reg = giou_loss(
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
)
elif box_reg_loss_type == "diou":
pred_boxes = [
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
]
loss_box_reg = diou_loss(
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
)
elif box_reg_loss_type == "ciou":
pred_boxes = [
box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
]
loss_box_reg = ciou_loss(
torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
)
else:
raise ValueError(f"Invalid dense box regression loss type '{box_reg_loss_type}'")
return loss_box_reg
|