Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,266 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
from typing import List, Tuple
import torch
from fvcore.nn import sigmoid_focal_loss_jit
from torch import Tensor, nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import CycleBatchNormList, ShapeSpec, batched_nms, cat, get_norm
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from ..anchor_generator import build_anchor_generator
from ..backbone import Backbone, build_backbone
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss
from ..matcher import Matcher
from .build import META_ARCH_REGISTRY
from .dense_detector import DenseDetector, permute_to_N_HWA_K # noqa
__all__ = ["RetinaNet"]
logger = logging.getLogger(__name__)
@META_ARCH_REGISTRY.register()
class RetinaNet(DenseDetector):
"""
Implement RetinaNet in :paper:`RetinaNet`.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
head: nn.Module,
head_in_features,
anchor_generator,
box2box_transform,
anchor_matcher,
num_classes,
focal_loss_alpha=0.25,
focal_loss_gamma=2.0,
smooth_l1_beta=0.0,
box_reg_loss_type="smooth_l1",
test_score_thresh=0.05,
test_topk_candidates=1000,
test_nms_thresh=0.5,
max_detections_per_image=100,
pixel_mean,
pixel_std,
vis_period=0,
input_format="BGR",
):
"""
NOTE: this interface is experimental.
Args:
backbone: a backbone module, must follow detectron2's backbone interface
head (nn.Module): a module that predicts logits and regression deltas
for each level from a list of per-level features
head_in_features (Tuple[str]): Names of the input feature maps to be used in head
anchor_generator (nn.Module): a module that creates anchors from a
list of features. Usually an instance of :class:`AnchorGenerator`
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to
instance boxes
anchor_matcher (Matcher): label the anchors by matching them with ground truth.
num_classes (int): number of classes. Used to label background proposals.
# Loss parameters:
focal_loss_alpha (float): focal_loss_alpha
focal_loss_gamma (float): focal_loss_gamma
smooth_l1_beta (float): smooth_l1_beta
box_reg_loss_type (str): Options are "smooth_l1", "giou", "diou", "ciou"
# Inference parameters:
test_score_thresh (float): Inference cls score threshold, only anchors with
score > INFERENCE_TH are considered for inference (to improve speed)
test_topk_candidates (int): Select topk candidates before NMS
test_nms_thresh (float): Overlap threshold used for non-maximum suppression
(suppress boxes with IoU >= this threshold)
max_detections_per_image (int):
Maximum number of detections to return per image during inference
(100 is based on the limit established for the COCO dataset).
pixel_mean, pixel_std: see :class:`DenseDetector`.
"""
super().__init__(
backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std
)
self.num_classes = num_classes
# Anchors
self.anchor_generator = anchor_generator
self.box2box_transform = box2box_transform
self.anchor_matcher = anchor_matcher
# Loss parameters:
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
self.smooth_l1_beta = smooth_l1_beta
self.box_reg_loss_type = box_reg_loss_type
# Inference parameters:
self.test_score_thresh = test_score_thresh
self.test_topk_candidates = test_topk_candidates
self.test_nms_thresh = test_nms_thresh
self.max_detections_per_image = max_detections_per_image
# Vis parameters
self.vis_period = vis_period
self.input_format = input_format
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
backbone_shape = backbone.output_shape()
feature_shapes = [backbone_shape[f] for f in cfg.MODEL.RETINANET.IN_FEATURES]
head = RetinaNetHead(cfg, feature_shapes)
anchor_generator = build_anchor_generator(cfg, feature_shapes)
return {
"backbone": backbone,
"head": head,
"anchor_generator": anchor_generator,
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RETINANET.BBOX_REG_WEIGHTS),
"anchor_matcher": Matcher(
cfg.MODEL.RETINANET.IOU_THRESHOLDS,
cfg.MODEL.RETINANET.IOU_LABELS,
allow_low_quality_matches=True,
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
"num_classes": cfg.MODEL.RETINANET.NUM_CLASSES,
"head_in_features": cfg.MODEL.RETINANET.IN_FEATURES,
# Loss parameters:
"focal_loss_alpha": cfg.MODEL.RETINANET.FOCAL_LOSS_ALPHA,
"focal_loss_gamma": cfg.MODEL.RETINANET.FOCAL_LOSS_GAMMA,
"smooth_l1_beta": cfg.MODEL.RETINANET.SMOOTH_L1_LOSS_BETA,
"box_reg_loss_type": cfg.MODEL.RETINANET.BBOX_REG_LOSS_TYPE,
# Inference parameters:
"test_score_thresh": cfg.MODEL.RETINANET.SCORE_THRESH_TEST,
"test_topk_candidates": cfg.MODEL.RETINANET.TOPK_CANDIDATES_TEST,
"test_nms_thresh": cfg.MODEL.RETINANET.NMS_THRESH_TEST,
"max_detections_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
# Vis parameters
"vis_period": cfg.VIS_PERIOD,
"input_format": cfg.INPUT.FORMAT,
}
def forward_training(self, images, features, predictions, gt_instances):
# Transpose the Hi*Wi*A dimension to the middle:
pred_logits, pred_anchor_deltas = self._transpose_dense_predictions(
predictions, [self.num_classes, 4]
)
anchors = self.anchor_generator(features)
gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances)
return self.losses(anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes)
def losses(self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes):
"""
Args:
anchors (list[Boxes]): a list of #feature level Boxes
gt_labels, gt_boxes: see output of :meth:`RetinaNet.label_anchors`.
Their shapes are (N, R) and (N, R, 4), respectively, where R is
the total number of anchors across levels, i.e. sum(Hi x Wi x Ai)
pred_logits, pred_anchor_deltas: both are list[Tensor]. Each element in the
list corresponds to one level and has shape (N, Hi * Wi * Ai, K or 4).
Where K is the number of classes used in `pred_logits`.
Returns:
dict[str, Tensor]:
mapping from a named loss to a scalar tensor storing the loss.
Used during training only. The dict keys are: "loss_cls" and "loss_box_reg"
"""
num_images = len(gt_labels)
gt_labels = torch.stack(gt_labels) # (N, R)
valid_mask = gt_labels >= 0
pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes)
num_pos_anchors = pos_mask.sum().item()
get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images)
normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 100)
# classification and regression loss
gt_labels_target = F.one_hot(gt_labels[valid_mask], num_classes=self.num_classes + 1)[
:, :-1
] # no loss for the last (background) class
loss_cls = sigmoid_focal_loss_jit(
cat(pred_logits, dim=1)[valid_mask],
gt_labels_target.to(pred_logits[0].dtype),
alpha=self.focal_loss_alpha,
gamma=self.focal_loss_gamma,
reduction="sum",
)
loss_box_reg = _dense_box_regression_loss(
anchors,
self.box2box_transform,
pred_anchor_deltas,
gt_boxes,
pos_mask,
box_reg_loss_type=self.box_reg_loss_type,
smooth_l1_beta=self.smooth_l1_beta,
)
return {
"loss_cls": loss_cls / normalizer,
"loss_box_reg": loss_box_reg / normalizer,
}
@torch.no_grad()
def label_anchors(self, anchors, gt_instances):
"""
Args:
anchors (list[Boxes]): A list of #feature level Boxes.
The Boxes contains anchors of this image on the specific feature level.
gt_instances (list[Instances]): a list of N `Instances`s. The i-th
`Instances` contains the ground-truth per-instance annotations
for the i-th input image.
Returns:
list[Tensor]: List of #img tensors. i-th element is a vector of labels whose length is
the total number of anchors across all feature maps (sum(Hi * Wi * A)).
Label values are in {-1, 0, ..., K}, with -1 means ignore, and K means background.
list[Tensor]: i-th element is a Rx4 tensor, where R is the total number of anchors
across feature maps. The values are the matched gt boxes for each anchor.
Values are undefined for those anchors not labeled as foreground.
"""
anchors = Boxes.cat(anchors) # Rx4
gt_labels = []
matched_gt_boxes = []
for gt_per_image in gt_instances:
match_quality_matrix = pairwise_iou(gt_per_image.gt_boxes, anchors)
matched_idxs, anchor_labels = self.anchor_matcher(match_quality_matrix)
del match_quality_matrix
if len(gt_per_image) > 0:
matched_gt_boxes_i = gt_per_image.gt_boxes.tensor[matched_idxs]
gt_labels_i = gt_per_image.gt_classes[matched_idxs]
# Anchors with label 0 are treated as background.
gt_labels_i[anchor_labels == 0] = self.num_classes
# Anchors with label -1 are ignored.
gt_labels_i[anchor_labels == -1] = -1
else:
matched_gt_boxes_i = torch.zeros_like(anchors.tensor)
gt_labels_i = torch.zeros_like(matched_idxs) + self.num_classes
gt_labels.append(gt_labels_i)
matched_gt_boxes.append(matched_gt_boxes_i)
return gt_labels, matched_gt_boxes
def forward_inference(
self, images: ImageList, features: List[Tensor], predictions: List[List[Tensor]]
):
pred_logits, pred_anchor_deltas = self._transpose_dense_predictions(
predictions, [self.num_classes, 4]
)
anchors = self.anchor_generator(features)
results: List[Instances] = []
for img_idx, image_size in enumerate(images.image_sizes):
scores_per_image = [x[img_idx].sigmoid_() for x in pred_logits]
deltas_per_image = [x[img_idx] for x in pred_anchor_deltas]
results_per_image = self.inference_single_image(
anchors, scores_per_image, deltas_per_image, image_size
)
results.append(results_per_image)
return results
def inference_single_image(
self,
anchors: List[Boxes],
box_cls: List[Tensor],
box_delta: List[Tensor],
image_size: Tuple[int, int],
):
"""
Single-image inference. Return bounding-box detection results by thresholding
on scores and applying non-maximum suppression (NMS).
Arguments:
anchors (list[Boxes]): list of #feature levels. Each entry contains
a Boxes object, which contains all the anchors in that feature level.
box_cls (list[Tensor]): list of #feature levels. Each entry contains
tensor of size (H x W x A, K)
box_delta (list[Tensor]): Same shape as 'box_cls' except that K becomes 4.
image_size (tuple(H, W)): a tuple of the image height and width.
Returns:
Same as `inference`, but for only one image.
"""
pred = self._decode_multi_level_predictions(
anchors,
box_cls,
box_delta,
self.test_score_thresh,
self.test_topk_candidates,
image_size,
)
keep = batched_nms( # per-class NMS
pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh
)
return pred[keep[: self.max_detections_per_image]]
class RetinaNetHead(nn.Module):
"""
The head used in RetinaNet for object classification and box regression.
It has two subnets for the two tasks, with a common structure but separate parameters.
"""
@configurable
def __init__(
self,
*,
input_shape: List[ShapeSpec],
num_classes,
num_anchors,
conv_dims: List[int],
norm="",
prior_prob=0.01,
):
"""
NOTE: this interface is experimental.
Args:
input_shape (List[ShapeSpec]): input shape
num_classes (int): number of classes. Used to label background proposals.
num_anchors (int): number of generated anchors
conv_dims (List[int]): dimensions for each convolution layer
norm (str or callable):
Normalization for conv layers except for the two output layers.
See :func:`detectron2.layers.get_norm` for supported types.
prior_prob (float): Prior weight for computing bias
"""
super().__init__()
self._num_features = len(input_shape)
if norm == "BN" or norm == "SyncBN":
logger.info(
f"Using domain-specific {norm} in RetinaNetHead with len={self._num_features}."
)
bn_class = nn.BatchNorm2d if norm == "BN" else nn.SyncBatchNorm
def norm(c):
return CycleBatchNormList(
length=self._num_features, bn_class=bn_class, num_features=c
)
else:
norm_name = str(type(get_norm(norm, 32)))
if "BN" in norm_name:
logger.warning(
f"Shared BatchNorm (type={norm_name}) may not work well in RetinaNetHead."
)
cls_subnet = []
bbox_subnet = []
for in_channels, out_channels in zip(
[input_shape[0].channels] + list(conv_dims), conv_dims
):
cls_subnet.append(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
)
if norm:
cls_subnet.append(get_norm(norm, out_channels))
cls_subnet.append(nn.ReLU())
bbox_subnet.append(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
)
if norm:
bbox_subnet.append(get_norm(norm, out_channels))
bbox_subnet.append(nn.ReLU())
self.cls_subnet = nn.Sequential(*cls_subnet)
self.bbox_subnet = nn.Sequential(*bbox_subnet)
self.cls_score = nn.Conv2d(
conv_dims[-1], num_anchors * num_classes, kernel_size=3, stride=1, padding=1
)
self.bbox_pred = nn.Conv2d(
conv_dims[-1], num_anchors * 4, kernel_size=3, stride=1, padding=1
)
# Initialization
for modules in [self.cls_subnet, self.bbox_subnet, self.cls_score, self.bbox_pred]:
for layer in modules.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, mean=0, std=0.01)
torch.nn.init.constant_(layer.bias, 0)
# Use prior in model initialization to improve stability
bias_value = -(math.log((1 - prior_prob) / prior_prob))
torch.nn.init.constant_(self.cls_score.bias, bias_value)
@classmethod
def from_config(cls, cfg, input_shape: List[ShapeSpec]):
num_anchors = build_anchor_generator(cfg, input_shape).num_cell_anchors
assert (
len(set(num_anchors)) == 1
), "Using different number of anchors between levels is not currently supported!"
num_anchors = num_anchors[0]
return {
"input_shape": input_shape,
"num_classes": cfg.MODEL.RETINANET.NUM_CLASSES,
"conv_dims": [input_shape[0].channels] * cfg.MODEL.RETINANET.NUM_CONVS,
"prior_prob": cfg.MODEL.RETINANET.PRIOR_PROB,
"norm": cfg.MODEL.RETINANET.NORM,
"num_anchors": num_anchors,
}
def forward(self, features: List[Tensor]):
"""
Arguments:
features (list[Tensor]): FPN feature map tensors in high to low resolution.
Each tensor in the list correspond to different feature levels.
Returns:
logits (list[Tensor]): #lvl tensors, each has shape (N, AxK, Hi, Wi).
The tensor predicts the classification probability
at each spatial position for each of the A anchors and K object
classes.
bbox_reg (list[Tensor]): #lvl tensors, each has shape (N, Ax4, Hi, Wi).
The tensor predicts 4-vector (dx,dy,dw,dh) box
regression values for every anchor. These values are the
relative offset between the anchor and the ground truth box.
"""
assert len(features) == self._num_features
logits = []
bbox_reg = []
for feature in features:
logits.append(self.cls_score(self.cls_subnet(feature)))
bbox_reg.append(self.bbox_pred(self.bbox_subnet(feature)))
return logits, bbox_reg
|