File size: 11,156 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import List
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.layers import Conv2d, ConvTranspose2d, cat, interpolate
from detectron2.structures import Instances, heatmaps_to_keypoints
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry

_TOTAL_SKIPPED = 0


__all__ = [
    "ROI_KEYPOINT_HEAD_REGISTRY",
    "build_keypoint_head",
    "BaseKeypointRCNNHead",
    "KRCNNConvDeconvUpsampleHead",
]


ROI_KEYPOINT_HEAD_REGISTRY = Registry("ROI_KEYPOINT_HEAD")
ROI_KEYPOINT_HEAD_REGISTRY.__doc__ = """
Registry for keypoint heads, which make keypoint predictions from per-region features.

The registered object will be called with `obj(cfg, input_shape)`.
"""


def build_keypoint_head(cfg, input_shape):
    """
    Build a keypoint head from `cfg.MODEL.ROI_KEYPOINT_HEAD.NAME`.
    """
    name = cfg.MODEL.ROI_KEYPOINT_HEAD.NAME
    return ROI_KEYPOINT_HEAD_REGISTRY.get(name)(cfg, input_shape)


def keypoint_rcnn_loss(pred_keypoint_logits, instances, normalizer):
    """
    Arguments:
        pred_keypoint_logits (Tensor): A tensor of shape (N, K, S, S) where N is the total number
            of instances in the batch, K is the number of keypoints, and S is the side length
            of the keypoint heatmap. The values are spatial logits.
        instances (list[Instances]): A list of M Instances, where M is the batch size.
            These instances are predictions from the model
            that are in 1:1 correspondence with pred_keypoint_logits.
            Each Instances should contain a `gt_keypoints` field containing a `structures.Keypoint`
            instance.
        normalizer (float): Normalize the loss by this amount.
            If not specified, we normalize by the number of visible keypoints in the minibatch.

    Returns a scalar tensor containing the loss.
    """
    heatmaps = []
    valid = []

    keypoint_side_len = pred_keypoint_logits.shape[2]
    for instances_per_image in instances:
        if len(instances_per_image) == 0:
            continue
        keypoints = instances_per_image.gt_keypoints
        heatmaps_per_image, valid_per_image = keypoints.to_heatmap(
            instances_per_image.proposal_boxes.tensor, keypoint_side_len
        )
        heatmaps.append(heatmaps_per_image.view(-1))
        valid.append(valid_per_image.view(-1))

    if len(heatmaps):
        keypoint_targets = cat(heatmaps, dim=0)
        valid = cat(valid, dim=0).to(dtype=torch.uint8)
        valid = torch.nonzero(valid).squeeze(1)

    # torch.mean (in binary_cross_entropy_with_logits) doesn't
    # accept empty tensors, so handle it separately
    if len(heatmaps) == 0 or valid.numel() == 0:
        global _TOTAL_SKIPPED
        _TOTAL_SKIPPED += 1
        storage = get_event_storage()
        storage.put_scalar("kpts_num_skipped_batches", _TOTAL_SKIPPED, smoothing_hint=False)
        return pred_keypoint_logits.sum() * 0

    N, K, H, W = pred_keypoint_logits.shape
    pred_keypoint_logits = pred_keypoint_logits.view(N * K, H * W)

    keypoint_loss = F.cross_entropy(
        pred_keypoint_logits[valid], keypoint_targets[valid], reduction="sum"
    )

    # If a normalizer isn't specified, normalize by the number of visible keypoints in the minibatch
    if normalizer is None:
        normalizer = valid.numel()
    keypoint_loss /= normalizer

    return keypoint_loss


def keypoint_rcnn_inference(pred_keypoint_logits: torch.Tensor, pred_instances: List[Instances]):
    """
    Post process each predicted keypoint heatmap in `pred_keypoint_logits` into (x, y, score)
        and add it to the `pred_instances` as a `pred_keypoints` field.

    Args:
        pred_keypoint_logits (Tensor): A tensor of shape (R, K, S, S) where R is the total number
           of instances in the batch, K is the number of keypoints, and S is the side length of
           the keypoint heatmap. The values are spatial logits.
        pred_instances (list[Instances]): A list of N Instances, where N is the number of images.

    Returns:
        None. Each element in pred_instances will contain extra "pred_keypoints" and
            "pred_keypoint_heatmaps" fields. "pred_keypoints" is a tensor of shape
            (#instance, K, 3) where the last dimension corresponds to (x, y, score).
            The scores are larger than 0. "pred_keypoint_heatmaps" contains the raw
            keypoint logits as passed to this function.
    """
    # flatten all bboxes from all images together (list[Boxes] -> Rx4 tensor)
    bboxes_flat = cat([b.pred_boxes.tensor for b in pred_instances], dim=0)

    pred_keypoint_logits = pred_keypoint_logits.detach()
    keypoint_results = heatmaps_to_keypoints(pred_keypoint_logits, bboxes_flat.detach())
    num_instances_per_image = [len(i) for i in pred_instances]
    keypoint_results = keypoint_results[:, :, [0, 1, 3]].split(num_instances_per_image, dim=0)
    heatmap_results = pred_keypoint_logits.split(num_instances_per_image, dim=0)

    for keypoint_results_per_image, heatmap_results_per_image, instances_per_image in zip(
        keypoint_results, heatmap_results, pred_instances
    ):
        # keypoint_results_per_image is (num instances)x(num keypoints)x(x, y, score)
        # heatmap_results_per_image is (num instances)x(num keypoints)x(side)x(side)
        instances_per_image.pred_keypoints = keypoint_results_per_image
        instances_per_image.pred_keypoint_heatmaps = heatmap_results_per_image


class BaseKeypointRCNNHead(nn.Module):
    """
    Implement the basic Keypoint R-CNN losses and inference logic described in
    Sec. 5 of :paper:`Mask R-CNN`.
    """

    @configurable
    def __init__(self, *, num_keypoints, loss_weight=1.0, loss_normalizer=1.0):
        """
        NOTE: this interface is experimental.

        Args:
            num_keypoints (int): number of keypoints to predict
            loss_weight (float): weight to multiple on the keypoint loss
            loss_normalizer (float or str):
                If float, divide the loss by `loss_normalizer * #images`.
                If 'visible', the loss is normalized by the total number of
                visible keypoints across images.
        """
        super().__init__()
        self.num_keypoints = num_keypoints
        self.loss_weight = loss_weight
        assert loss_normalizer == "visible" or isinstance(loss_normalizer, float), loss_normalizer
        self.loss_normalizer = loss_normalizer

    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = {
            "loss_weight": cfg.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT,
            "num_keypoints": cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS,
        }
        normalize_by_visible = (
            cfg.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
        )  # noqa
        if not normalize_by_visible:
            batch_size_per_image = cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE
            positive_sample_fraction = cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
            ret["loss_normalizer"] = (
                ret["num_keypoints"] * batch_size_per_image * positive_sample_fraction
            )
        else:
            ret["loss_normalizer"] = "visible"
        return ret

    def forward(self, x, instances: List[Instances]):
        """
        Args:
            x: input 4D region feature(s) provided by :class:`ROIHeads`.
            instances (list[Instances]): contains the boxes & labels corresponding
                to the input features.
                Exact format is up to its caller to decide.
                Typically, this is the foreground instances in training, with
                "proposal_boxes" field and other gt annotations.
                In inference, it contains boxes that are already predicted.

        Returns:
            A dict of losses if in training. The predicted "instances" if in inference.
        """
        x = self.layers(x)
        if self.training:
            num_images = len(instances)
            normalizer = (
                None if self.loss_normalizer == "visible" else num_images * self.loss_normalizer
            )
            return {
                "loss_keypoint": keypoint_rcnn_loss(x, instances, normalizer=normalizer)
                * self.loss_weight
            }
        else:
            keypoint_rcnn_inference(x, instances)
            return instances

    def layers(self, x):
        """
        Neural network layers that makes predictions from regional input features.
        """
        raise NotImplementedError


# To get torchscript support, we make the head a subclass of `nn.Sequential`.
# Therefore, to add new layers in this head class, please make sure they are
# added in the order they will be used in forward().
@ROI_KEYPOINT_HEAD_REGISTRY.register()
class KRCNNConvDeconvUpsampleHead(BaseKeypointRCNNHead, nn.Sequential):
    """
    A standard keypoint head containing a series of 3x3 convs, followed by
    a transpose convolution and bilinear interpolation for upsampling.
    It is described in Sec. 5 of :paper:`Mask R-CNN`.
    """

    @configurable
    def __init__(self, input_shape, *, num_keypoints, conv_dims, **kwargs):
        """
        NOTE: this interface is experimental.

        Args:
            input_shape (ShapeSpec): shape of the input feature
            conv_dims: an iterable of output channel counts for each conv in the head
                         e.g. (512, 512, 512) for three convs outputting 512 channels.
        """
        super().__init__(num_keypoints=num_keypoints, **kwargs)

        # default up_scale to 2.0 (this can be made an option)
        up_scale = 2.0
        in_channels = input_shape.channels

        for idx, layer_channels in enumerate(conv_dims, 1):
            module = Conv2d(in_channels, layer_channels, 3, stride=1, padding=1)
            self.add_module("conv_fcn{}".format(idx), module)
            self.add_module("conv_fcn_relu{}".format(idx), nn.ReLU())
            in_channels = layer_channels

        deconv_kernel = 4
        self.score_lowres = ConvTranspose2d(
            in_channels, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1
        )
        self.up_scale = up_scale

        for name, param in self.named_parameters():
            if "bias" in name:
                nn.init.constant_(param, 0)
            elif "weight" in name:
                # Caffe2 implementation uses MSRAFill, which in fact
                # corresponds to kaiming_normal_ in PyTorch
                nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu")

    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = super().from_config(cfg, input_shape)
        ret["input_shape"] = input_shape
        ret["conv_dims"] = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS
        return ret

    def layers(self, x):
        for layer in self:
            x = layer(x)
        x = interpolate(x, scale_factor=self.up_scale, mode="bilinear", align_corners=False)
        return x