Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,008 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# DeepLab in Detectron2
In this repository, we implement DeepLabV3 and DeepLabV3+ in Detectron2.
## Installation
Install Detectron2 following [the instructions](https://detectron2.readthedocs.io/tutorials/install.html).
## Training
To train a model with 8 GPUs run:
```bash
cd /path/to/detectron2/projects/DeepLab
python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --num-gpus 8
```
## Evaluation
Model evaluation can be done similarly:
```bash
cd /path/to/detectron2/projects/DeepLab
python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
```
## Cityscapes Semantic Segmentation
Cityscapes models are trained with ImageNet pretraining.
<table><tbody>
<!-- START TABLE -->
<!-- TABLE HEADER -->
<th valign="bottom">Method</th>
<th valign="bottom">Backbone</th>
<th valign="bottom">Output<br/>resolution</th>
<th valign="bottom">mIoU</th>
<th valign="bottom">model id</th>
<th valign="bottom">download</th>
<!-- TABLE BODY -->
<tr><td align="left">DeepLabV3</td>
<td align="center">R101-DC5</td>
<td align="center">1024×2048</td>
<td align="center"> 76.7 </td>
<td align="center"> - </td>
<td align="center"> - | - </td>
</tr>
<tr><td align="left"><a href="configs/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml">DeepLabV3</a></td>
<td align="center">R103-DC5</td>
<td align="center">1024×2048</td>
<td align="center"> 78.5 </td>
<td align="center"> 28041665 </td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16/28041665/model_final_0dff1b.pkl
">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16/28041665/metrics.json
">metrics</a></td>
</tr>
<tr><td align="left">DeepLabV3+</td>
<td align="center">R101-DC5</td>
<td align="center">1024×2048</td>
<td align="center"> 78.1 </td>
<td align="center"> - </td>
<td align="center"> - | - </td>
</tr>
<tr><td align="left"><a href="configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml">DeepLabV3+</a></td>
<td align="center">R103-DC5</td>
<td align="center">1024×2048</td>
<td align="center"> 80.0 </td>
<td align="center">28054032</td>
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16/28054032/model_final_a8a355.pkl
">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/DeepLab/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16/28054032/metrics.json
">metrics</a></td>
</tr>
</tbody></table>
Note:
- [R103](https://dl.fbaipublicfiles.com/detectron2/DeepLab/R-103.pkl): a ResNet-101 with its first 7x7 convolution replaced by 3 3x3 convolutions.
This modification has been used in most semantic segmentation papers. We pre-train this backbone on ImageNet using the default recipe of [pytorch examples](https://github.com/pytorch/examples/tree/master/imagenet).
- DC5 means using dilated convolution in `res5`.
## <a name="CitingDeepLab"></a>Citing DeepLab
If you use DeepLab, please use the following BibTeX entry.
* DeepLabv3+:
```
@inproceedings{deeplabv3plus2018,
title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
booktitle={ECCV},
year={2018}
}
```
* DeepLabv3:
```
@article{deeplabv32018,
title={Rethinking atrous convolution for semantic image segmentation},
author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig},
journal={arXiv:1706.05587},
year={2017}
}
```
|