File size: 10,643 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Apply Net

`apply_net` is a tool to print or visualize DensePose results on a set of images.
It has two modes: `dump` to save DensePose model results to a pickle file
and `show` to visualize them on images.

The `image.jpg` file that is used as an example in this doc can be found [here](http://images.cocodataset.org/train2017/000000117508.jpg)

## Dump Mode

The general command form is:
```bash
python apply_net.py dump [-h] [-v] [--output <dump_file>] <config> <model> <input>
```

There are three mandatory arguments:
 - `<config>`, configuration file for a given model;
 - `<model>`, model file with trained parameters
 - `<input>`, input image file name, pattern or folder

One can additionally provide `--output` argument to define the output file name,
which defaults to `output.pkl`.


Examples:

1. Dump results of the [R_50_FPN_s1x](https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl) DensePose model for images in a folder `images` to file `dump.pkl`:
```bash
python apply_net.py dump configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
images --output dump.pkl -v
```

2. Dump results of the [R_50_FPN_s1x](https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl) DensePose model for images with file name matching a pattern `image*.jpg` to file `results.pkl`:
```bash
python apply_net.py dump configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
"image*.jpg" --output results.pkl -v
```

If you want to load the pickle file generated by the above command:
```
# make sure DensePose is in your PYTHONPATH, or use the following line to add it:
sys.path.append("/your_detectron2_path/detectron2_repo/projects/DensePose/")

f = open('/your_result_path/results.pkl', 'rb')
data = pickle.load(f)
```

The file `results.pkl` contains the list of results per image, for each image the result is a dictionary.

**If you use a [IUV model](DENSEPOSE_IUV.md#-model-zoo-and-baselines)**, the dumped data will have the following format:

```
data: [{'file_name': '/your_path/image1.jpg',
        'scores': tensor([0.9884]),
        'pred_boxes_XYXY': tensor([[ 69.6114,   0.0000, 706.9797, 706.0000]]),
        'pred_densepose': [DensePoseChartResultWithConfidences(labels=tensor(...), uv=tensor(...), sigma_1=None,
            sigma_2=None, kappa_u=None, kappa_v=None, fine_segm_confidence=None, coarse_segm_confidence=None),
            DensePoseChartResultWithConfidences, ...]
        }
       {'file_name': '/your_path/image2.jpg',
        'scores': tensor([0.9999, 0.5373, 0.3991]),
        'pred_boxes_XYXY': tensor([[ 59.5734,   7.7535, 579.9311, 932.3619],
                                   [612.9418, 686.1254, 612.9999, 704.6053],
                                   [164.5081, 407.4034, 598.3944, 920.4266]]),
        'pred_densepose': [DensePoseChartResultWithConfidences(labels=tensor(...), uv=tensor(...), sigma_1=None,
            sigma_2=None, kappa_u=None, kappa_v=None, fine_segm_confidence=None, coarse_segm_confidence=None),
            DensePoseChartResultWithConfidences, ...]
        }]
```

`DensePoseChartResultWithConfidences` contains the following fields:
- `labels` - a tensor of size `[H, W]` of type `torch.long` which contains fine segmentation labels (previously called `I`)
- `uv` - a tensor of size `[2, H, W]` of type `torch.float` which contains `U` and `V` coordinates
- various optional confidence-related fields (`sigma_1`, `sigma_2`, `kappa_u`, `kappa_v`, `fine_segm_confidence`, `coarse_segm_confidence`)


**If you use a [CSE model](DENSEPOSE_CSE.md#-model-zoo-and-baselines)**, the dumped data will have the following format:
```
data: [{'file_name': '/your_path/image1.jpg',
        'scores': tensor([0.9984, 0.9961]),
        'pred_boxes_XYXY': tensor([[480.0093, 461.0796, 698.3614, 696.1011],
                                   [78.1589, 168.6614, 307.1287, 653.8522]]),
        'pred_densepose': DensePoseEmbeddingPredictorOutput(embedding=tensor(...), coarse_segm=tensor(...))}
        {'file_name': '/your_path/image2.jpg',
        'scores': tensor([0.9189, 0.9491]),
        'pred_boxes_XYXY': tensor([[734.9685, 534.2003, 287.3923, 254.8859],
                                   [434.2853, 765.1219, 132.1029, 867.9283]]),
        'pred_densepose': DensePoseEmbeddingPredictorOutput(embedding=tensor(...), coarse_segm=tensor(...))}]
```

`DensePoseEmbeddingPredictorOutput` contains the following fields:
- `embedding` - a tensor of size `[N, D, sz, sz]` of type `torch.float`, which contains embeddings of size `D` of the `N` detections in the image
- `coarse_segm` - a tensor of size `[N, 2, sz, sz]` of type `torch.float` which contains segmentation scores of the `N` detections in the image; e.g. a mask can be obtained by `coarse_segm.argmax(dim=1)`

`sz` is a fixed size for the tensors; you can resize them to the size of the bounding box, if needed

We can use the following code, to parse the outputs of the first
detected instance on the first image (IUV model).
```
img_id, instance_id = 0, 0  # Look at the first image and the first detected instance
bbox_xyxy = data[img_id]['pred_boxes_XYXY'][instance_id]
result = data[img_id]['pred_densepose'][instance_id]
uv = result.uv
```
The array `bbox_xyxy` contains (x0, y0, x1, y1) of the bounding box.


## Visualization Mode

The general command form is:
```bash
python apply_net.py show [-h] [-v] [--min_score <score>] [--nms_thresh <threshold>] [--output <image_file>] <config> <model> <input> <visualizations>
```

There are four mandatory arguments:
 - `<config>`, configuration file for a given model;
 - `<model>`, model file with trained parameters
 - `<input>`, input image file name, pattern or folder
 - `<visualizations>`, visualizations specifier; currently available visualizations are:
   * `bbox` - bounding boxes of detected persons;
   * `dp_segm` - segmentation masks for detected persons;
   * `dp_u` - each body part is colored according to the estimated values of the
     U coordinate in part parameterization;
   * `dp_v` - each body part is colored according to the estimated values of the
     V coordinate in part parameterization;
   * `dp_contour` - plots contours with color-coded U and V coordinates;
   * `dp_iuv_texture` - transfers the texture from a given texture image file to detected instances, in IUV mode;
   * `dp_vertex` - plots the rainbow visualization of the closest vertices prediction for a given mesh, in CSE mode;
   * `dp_cse_texture` - transfers the texture from a given list of texture image files (one from each human or animal mesh) to detected instances, in CSE mode


One can additionally provide the following optional arguments:
 - `--min_score` to only show detections with sufficient scores that are not lower than provided value
 - `--nms_thresh` to additionally apply non-maximum suppression to detections at a given threshold
 - `--output` to define visualization file name template, which defaults to `output.png`.
   To distinguish output file names for different images, the tool appends 1-based entry index,
   e.g. output.0001.png, output.0002.png, etc...
- `--texture_atlas` to define the texture atlas image for IUV texture transfer
- `--texture_atlases_map` to define the texture atlas images map (a dictionary `{mesh name: texture atlas image}`) for CSE texture transfer


The following examples show how to output results of a DensePose model
with ResNet-50 FPN backbone using different visualizations for image `image.jpg`:

1. Show bounding box and segmentation:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg bbox,dp_segm -v
```
![Bounding Box + Segmentation Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_segm.jpg)

2. Show bounding box and estimated U coordinates for body parts:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml  \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg bbox,dp_u -v
```
![Bounding Box + U Coordinate Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_u.jpg)

3. Show bounding box and estimated V coordinates for body parts:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml  \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg bbox,dp_v -v
```
![Bounding Box + V Coordinate Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_v.jpg)

4. Show bounding box and estimated U and V coordinates via contour plots:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml  \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg dp_contour,bbox -v
```
![Bounding Box + Contour Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_contour.jpg)

5. Show bounding box and texture transfer:
```bash
python apply_net.py show configs/densepose_rcnn_R_50_FPN_s1x.yaml  \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
image.jpg dp_iuv_texture,bbox --texture_atlas texture_from_SURREAL.jpg -v
```
![Bounding Box + IUV Texture Transfer Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_iuv_texture.jpg)

6. Show bounding box and CSE rainbow visualization:
```bash
python apply_net.py show configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml  \
https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_s1x/251155172/model_final_c4ea5f.pkl \
image.jpg dp_vertex,bbox -v
```
![Bounding Box + CSE Rainbow Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_vertex.jpg)

7. Show bounding box and CSE texture transfer:
```bash
python apply_net.py show configs/cse/densepose_rcnn_R_50_FPN_s1x.yaml  \
https://dl.fbaipublicfiles.com/densepose/cse/densepose_rcnn_R_50_FPN_s1x/251155172/model_final_c4ea5f.pkl \
image.jpg dp_cse_texture,bbox  --texture_atlases_map '{"smpl_27554": "smpl_uvSnapshot_colors.jpg"}' -v
```
![Bounding Box + CSE Texture Transfer Visualization](https://dl.fbaipublicfiles.com/densepose/web/apply_net/res_bbox_dp_cse_texture.jpg)

The texture files can be found in the `doc/images` folder