File size: 8,412 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.

import argparse
import logging
import os
import sys
from timeit import default_timer as timer
from typing import Any, ClassVar, Dict, List
import torch

from detectron2.data.catalog import DatasetCatalog
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger

from densepose.structures import DensePoseDataRelative
from densepose.utils.dbhelper import EntrySelector
from densepose.utils.logger import verbosity_to_level
from densepose.vis.base import CompoundVisualizer
from densepose.vis.bounding_box import BoundingBoxVisualizer
from densepose.vis.densepose_data_points import (
    DensePoseDataCoarseSegmentationVisualizer,
    DensePoseDataPointsIVisualizer,
    DensePoseDataPointsUVisualizer,
    DensePoseDataPointsVisualizer,
    DensePoseDataPointsVVisualizer,
)

DOC = """Query DB - a tool to print / visualize data from a database
"""

LOGGER_NAME = "query_db"

logger = logging.getLogger(LOGGER_NAME)

_ACTION_REGISTRY: Dict[str, "Action"] = {}


class Action:
    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        parser.add_argument(
            "-v",
            "--verbosity",
            action="count",
            help="Verbose mode. Multiple -v options increase the verbosity.",
        )


def register_action(cls: type):
    """
    Decorator for action classes to automate action registration
    """
    global _ACTION_REGISTRY
    _ACTION_REGISTRY[cls.COMMAND] = cls
    return cls


class EntrywiseAction(Action):
    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        super(EntrywiseAction, cls).add_arguments(parser)
        parser.add_argument(
            "dataset", metavar="<dataset>", help="Dataset name (e.g. densepose_coco_2014_train)"
        )
        parser.add_argument(
            "selector",
            metavar="<selector>",
            help="Dataset entry selector in the form field1[:type]=value1[,"
            "field2[:type]=value_min-value_max...] which selects all "
            "entries from the dataset that satisfy the constraints",
        )
        parser.add_argument(
            "--max-entries", metavar="N", help="Maximum number of entries to process", type=int
        )

    @classmethod
    def execute(cls: type, args: argparse.Namespace):
        dataset = setup_dataset(args.dataset)
        entry_selector = EntrySelector.from_string(args.selector)
        context = cls.create_context(args)
        if args.max_entries is not None:
            for _, entry in zip(range(args.max_entries), dataset):
                if entry_selector(entry):
                    cls.execute_on_entry(entry, context)
        else:
            for entry in dataset:
                if entry_selector(entry):
                    cls.execute_on_entry(entry, context)

    @classmethod
    def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]:
        context = {}
        return context


@register_action
class PrintAction(EntrywiseAction):
    """
    Print action that outputs selected entries to stdout
    """

    COMMAND: ClassVar[str] = "print"

    @classmethod
    def add_parser(cls: type, subparsers: argparse._SubParsersAction):
        parser = subparsers.add_parser(cls.COMMAND, help="Output selected entries to stdout. ")
        cls.add_arguments(parser)
        parser.set_defaults(func=cls.execute)

    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        super(PrintAction, cls).add_arguments(parser)

    @classmethod
    def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]):
        import pprint

        printer = pprint.PrettyPrinter(indent=2, width=200, compact=True)
        printer.pprint(entry)


@register_action
class ShowAction(EntrywiseAction):
    """
    Show action that visualizes selected entries on an image
    """

    COMMAND: ClassVar[str] = "show"
    VISUALIZERS: ClassVar[Dict[str, object]] = {
        "dp_segm": DensePoseDataCoarseSegmentationVisualizer(),
        "dp_i": DensePoseDataPointsIVisualizer(),
        "dp_u": DensePoseDataPointsUVisualizer(),
        "dp_v": DensePoseDataPointsVVisualizer(),
        "dp_pts": DensePoseDataPointsVisualizer(),
        "bbox": BoundingBoxVisualizer(),
    }

    @classmethod
    def add_parser(cls: type, subparsers: argparse._SubParsersAction):
        parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
        cls.add_arguments(parser)
        parser.set_defaults(func=cls.execute)

    @classmethod
    def add_arguments(cls: type, parser: argparse.ArgumentParser):
        super(ShowAction, cls).add_arguments(parser)
        parser.add_argument(
            "visualizations",
            metavar="<visualizations>",
            help="Comma separated list of visualizations, possible values: "
            "[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
        )
        parser.add_argument(
            "--output",
            metavar="<image_file>",
            default="output.png",
            help="File name to save output to",
        )

    @classmethod
    def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]):
        import cv2
        import numpy as np

        image_fpath = PathManager.get_local_path(entry["file_name"])
        image = cv2.imread(image_fpath, cv2.IMREAD_GRAYSCALE)
        image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
        datas = cls._extract_data_for_visualizers_from_entry(context["vis_specs"], entry)
        visualizer = context["visualizer"]
        image_vis = visualizer.visualize(image, datas)
        entry_idx = context["entry_idx"] + 1
        out_fname = cls._get_out_fname(entry_idx, context["out_fname"])
        cv2.imwrite(out_fname, image_vis)
        logger.info(f"Output saved to {out_fname}")
        context["entry_idx"] += 1

    @classmethod
    def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
        base, ext = os.path.splitext(fname_base)
        return base + ".{0:04d}".format(entry_idx) + ext

    @classmethod
    def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]:
        vis_specs = args.visualizations.split(",")
        visualizers = []
        for vis_spec in vis_specs:
            vis = cls.VISUALIZERS[vis_spec]
            visualizers.append(vis)
        context = {
            "vis_specs": vis_specs,
            "visualizer": CompoundVisualizer(visualizers),
            "out_fname": args.output,
            "entry_idx": 0,
        }
        return context

    @classmethod
    def _extract_data_for_visualizers_from_entry(
        cls: type, vis_specs: List[str], entry: Dict[str, Any]
    ):
        dp_list = []
        bbox_list = []
        for annotation in entry["annotations"]:
            is_valid, _ = DensePoseDataRelative.validate_annotation(annotation)
            if not is_valid:
                continue
            bbox = torch.as_tensor(annotation["bbox"])
            bbox_list.append(bbox)
            dp_data = DensePoseDataRelative(annotation)
            dp_list.append(dp_data)
        datas = []
        for vis_spec in vis_specs:
            datas.append(bbox_list if "bbox" == vis_spec else (bbox_list, dp_list))
        return datas


def setup_dataset(dataset_name):
    logger.info("Loading dataset {}".format(dataset_name))
    start = timer()
    dataset = DatasetCatalog.get(dataset_name)
    stop = timer()
    logger.info("Loaded dataset {} in {:.3f}s".format(dataset_name, stop - start))
    return dataset


def create_argument_parser() -> argparse.ArgumentParser:
    parser = argparse.ArgumentParser(
        description=DOC,
        formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
    )
    parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
    subparsers = parser.add_subparsers(title="Actions")
    for _, action in _ACTION_REGISTRY.items():
        action.add_parser(subparsers)
    return parser


def main():
    parser = create_argument_parser()
    args = parser.parse_args()
    verbosity = getattr(args, "verbosity", None)
    global logger
    logger = setup_logger(name=LOGGER_NAME)
    logger.setLevel(verbosity_to_level(verbosity))
    args.func(args)


if __name__ == "__main__":
    main()