Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,930 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.layers import ShapeSpec, cat
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry
POINT_HEAD_REGISTRY = Registry("POINT_HEAD")
POINT_HEAD_REGISTRY.__doc__ = """
Registry for point heads, which makes prediction for a given set of per-point features.
The registered object will be called with `obj(cfg, input_shape)`.
"""
def roi_mask_point_loss(mask_logits, instances, point_labels):
"""
Compute the point-based loss for instance segmentation mask predictions
given point-wise mask prediction and its corresponding point-wise labels.
Args:
mask_logits (Tensor): A tensor of shape (R, C, P) or (R, 1, P) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images, C is the
number of foreground classes, and P is the number of points sampled for each mask.
The values are logits.
instances (list[Instances]): A list of N Instances, where N is the number of images
in the batch. These instances are in 1:1 correspondence with the `mask_logits`. So, i_th
elememt of the list contains R_i objects and R_1 + ... + R_N is equal to R.
The ground-truth labels (class, box, mask, ...) associated with each instance are stored
in fields.
point_labels (Tensor): A tensor of shape (R, P), where R is the total number of
predicted masks and P is the number of points for each mask.
Labels with value of -1 will be ignored.
Returns:
point_loss (Tensor): A scalar tensor containing the loss.
"""
with torch.no_grad():
cls_agnostic_mask = mask_logits.size(1) == 1
total_num_masks = mask_logits.size(0)
gt_classes = []
for instances_per_image in instances:
if len(instances_per_image) == 0:
continue
if not cls_agnostic_mask:
gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64)
gt_classes.append(gt_classes_per_image)
gt_mask_logits = point_labels
point_ignores = point_labels == -1
if gt_mask_logits.shape[0] == 0:
return mask_logits.sum() * 0
assert gt_mask_logits.numel() > 0, gt_mask_logits.shape
if cls_agnostic_mask:
mask_logits = mask_logits[:, 0]
else:
indices = torch.arange(total_num_masks)
gt_classes = cat(gt_classes, dim=0)
mask_logits = mask_logits[indices, gt_classes]
# Log the training accuracy (using gt classes and 0.0 threshold for the logits)
mask_accurate = (mask_logits > 0.0) == gt_mask_logits.to(dtype=torch.uint8)
mask_accurate = mask_accurate[~point_ignores]
mask_accuracy = mask_accurate.nonzero().size(0) / max(mask_accurate.numel(), 1.0)
get_event_storage().put_scalar("point/accuracy", mask_accuracy)
point_loss = F.binary_cross_entropy_with_logits(
mask_logits, gt_mask_logits.to(dtype=torch.float32), weight=~point_ignores, reduction="mean"
)
return point_loss
@POINT_HEAD_REGISTRY.register()
class StandardPointHead(nn.Module):
"""
A point head multi-layer perceptron which we model with conv1d layers with kernel 1. The head
takes both fine-grained and coarse prediction features as its input.
"""
def __init__(self, cfg, input_shape: ShapeSpec):
"""
The following attributes are parsed from config:
fc_dim: the output dimension of each FC layers
num_fc: the number of FC layers
coarse_pred_each_layer: if True, coarse prediction features are concatenated to each
layer's input
"""
super(StandardPointHead, self).__init__()
# fmt: off
num_classes = cfg.MODEL.POINT_HEAD.NUM_CLASSES
fc_dim = cfg.MODEL.POINT_HEAD.FC_DIM
num_fc = cfg.MODEL.POINT_HEAD.NUM_FC
cls_agnostic_mask = cfg.MODEL.POINT_HEAD.CLS_AGNOSTIC_MASK
self.coarse_pred_each_layer = cfg.MODEL.POINT_HEAD.COARSE_PRED_EACH_LAYER
input_channels = input_shape.channels
# fmt: on
fc_dim_in = input_channels + num_classes
self.fc_layers = []
for k in range(num_fc):
fc = nn.Conv1d(fc_dim_in, fc_dim, kernel_size=1, stride=1, padding=0, bias=True)
self.add_module("fc{}".format(k + 1), fc)
self.fc_layers.append(fc)
fc_dim_in = fc_dim
fc_dim_in += num_classes if self.coarse_pred_each_layer else 0
num_mask_classes = 1 if cls_agnostic_mask else num_classes
self.predictor = nn.Conv1d(fc_dim_in, num_mask_classes, kernel_size=1, stride=1, padding=0)
for layer in self.fc_layers:
weight_init.c2_msra_fill(layer)
# use normal distribution initialization for mask prediction layer
nn.init.normal_(self.predictor.weight, std=0.001)
if self.predictor.bias is not None:
nn.init.constant_(self.predictor.bias, 0)
def forward(self, fine_grained_features, coarse_features):
x = torch.cat((fine_grained_features, coarse_features), dim=1)
for layer in self.fc_layers:
x = F.relu(layer(x))
if self.coarse_pred_each_layer:
x = cat((x, coarse_features), dim=1)
return self.predictor(x)
@POINT_HEAD_REGISTRY.register()
class ImplicitPointHead(nn.Module):
"""
A point head multi-layer perceptron which we model with conv1d layers with kernel 1. The head
takes both fine-grained features and instance-wise MLP parameters as its input.
"""
def __init__(self, cfg, input_shape: ShapeSpec):
"""
The following attributes are parsed from config:
channels: the output dimension of each FC layers
num_layers: the number of FC layers (including the final prediction layer)
image_feature_enabled: if True, fine-grained image-level features are used
positional_encoding_enabled: if True, positional encoding is used
"""
super(ImplicitPointHead, self).__init__()
# fmt: off
self.num_layers = cfg.MODEL.POINT_HEAD.NUM_FC + 1
self.channels = cfg.MODEL.POINT_HEAD.FC_DIM
self.image_feature_enabled = cfg.MODEL.IMPLICIT_POINTREND.IMAGE_FEATURE_ENABLED
self.positional_encoding_enabled = cfg.MODEL.IMPLICIT_POINTREND.POS_ENC_ENABLED
self.num_classes = (
cfg.MODEL.POINT_HEAD.NUM_CLASSES if not cfg.MODEL.POINT_HEAD.CLS_AGNOSTIC_MASK else 1
)
self.in_channels = input_shape.channels
# fmt: on
if not self.image_feature_enabled:
self.in_channels = 0
if self.positional_encoding_enabled:
self.in_channels += 256
self.register_buffer("positional_encoding_gaussian_matrix", torch.randn((2, 128)))
assert self.in_channels > 0
num_weight_params, num_bias_params = [], []
assert self.num_layers >= 2
for l in range(self.num_layers):
if l == 0:
# input layer
num_weight_params.append(self.in_channels * self.channels)
num_bias_params.append(self.channels)
elif l == self.num_layers - 1:
# output layer
num_weight_params.append(self.channels * self.num_classes)
num_bias_params.append(self.num_classes)
else:
# intermediate layer
num_weight_params.append(self.channels * self.channels)
num_bias_params.append(self.channels)
self.num_weight_params = num_weight_params
self.num_bias_params = num_bias_params
self.num_params = sum(num_weight_params) + sum(num_bias_params)
def forward(self, fine_grained_features, point_coords, parameters):
# features: [R, channels, K]
# point_coords: [R, K, 2]
num_instances = fine_grained_features.size(0)
num_points = fine_grained_features.size(2)
if num_instances == 0:
return torch.zeros((0, 1, num_points), device=fine_grained_features.device)
if self.positional_encoding_enabled:
# locations: [R*K, 2]
locations = 2 * point_coords.reshape(num_instances * num_points, 2) - 1
locations = locations @ self.positional_encoding_gaussian_matrix.to(locations.device)
locations = 2 * np.pi * locations
locations = torch.cat([torch.sin(locations), torch.cos(locations)], dim=1)
# locations: [R, C, K]
locations = locations.reshape(num_instances, num_points, 256).permute(0, 2, 1)
if not self.image_feature_enabled:
fine_grained_features = locations
else:
fine_grained_features = torch.cat([locations, fine_grained_features], dim=1)
# features [R, C, K]
mask_feat = fine_grained_features.reshape(num_instances, self.in_channels, num_points)
weights, biases = self._parse_params(
parameters,
self.in_channels,
self.channels,
self.num_classes,
self.num_weight_params,
self.num_bias_params,
)
point_logits = self._dynamic_mlp(mask_feat, weights, biases, num_instances)
point_logits = point_logits.reshape(-1, self.num_classes, num_points)
return point_logits
@staticmethod
def _dynamic_mlp(features, weights, biases, num_instances):
assert features.dim() == 3, features.dim()
n_layers = len(weights)
x = features
for i, (w, b) in enumerate(zip(weights, biases)):
x = torch.einsum("nck,ndc->ndk", x, w) + b
if i < n_layers - 1:
x = F.relu(x)
return x
@staticmethod
def _parse_params(
pred_params,
in_channels,
channels,
num_classes,
num_weight_params,
num_bias_params,
):
assert pred_params.dim() == 2
assert len(num_weight_params) == len(num_bias_params)
assert pred_params.size(1) == sum(num_weight_params) + sum(num_bias_params)
num_instances = pred_params.size(0)
num_layers = len(num_weight_params)
params_splits = list(
torch.split_with_sizes(pred_params, num_weight_params + num_bias_params, dim=1)
)
weight_splits = params_splits[:num_layers]
bias_splits = params_splits[num_layers:]
for l in range(num_layers):
if l == 0:
# input layer
weight_splits[l] = weight_splits[l].reshape(num_instances, channels, in_channels)
bias_splits[l] = bias_splits[l].reshape(num_instances, channels, 1)
elif l < num_layers - 1:
# intermediate layer
weight_splits[l] = weight_splits[l].reshape(num_instances, channels, channels)
bias_splits[l] = bias_splits[l].reshape(num_instances, channels, 1)
else:
# output layer
weight_splits[l] = weight_splits[l].reshape(num_instances, num_classes, channels)
bias_splits[l] = bias_splits[l].reshape(num_instances, num_classes, 1)
return weight_splits, bias_splits
def build_point_head(cfg, input_channels):
"""
Build a point head defined by `cfg.MODEL.POINT_HEAD.NAME`.
"""
head_name = cfg.MODEL.POINT_HEAD.NAME
return POINT_HEAD_REGISTRY.get(head_name)(cfg, input_channels)
|