Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,448 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
This directory contains a few example scripts that demonstrate features of detectron2.
* `train_net.py`
An example training script that's made to train builtin models of detectron2.
For usage, see [GETTING_STARTED.md](../GETTING_STARTED.md).
* `plain_train_net.py`
Similar to `train_net.py`, but implements a training loop instead of using `Trainer`.
This script includes fewer features but it may be more friendly to hackers.
* `benchmark.py`
Benchmark the training speed, inference speed or data loading speed of a given config.
Usage:
```
python benchmark.py --config-file config.yaml --task train/eval/data [optional DDP flags]
```
* `analyze_model.py`
Analyze FLOPs, parameters, activations of a detectron2 model. See its `--help` for usage.
* `visualize_json_results.py`
Visualize the json instance detection/segmentation results dumped by `COCOEvalutor` or `LVISEvaluator`
Usage:
```
python visualize_json_results.py --input x.json --output dir/ --dataset coco_2017_val
```
If not using a builtin dataset, you'll need your own script or modify this script.
* `visualize_data.py`
Visualize ground truth raw annotations or training data (after preprocessing/augmentations).
Usage:
```
python visualize_data.py --config-file config.yaml --source annotation/dataloader --output-dir dir/ [--show]
```
NOTE: the script does not stop by itself when using `--source dataloader` because a training
dataloader is usually infinite.
|